Search results

1 – 6 of 6
Article
Publication date: 7 March 2016

I.A.A. Afinowi, Z.Q. Zhu, Y. Guan, Jean-Claude Mipo and P. Farah

– The purpose of this paper is to comparatively study the conventional, i.e. single magnet, and novel hybrid-magnet switched-flux permanent-magnet (HMSFPM) machines.

Abstract

Purpose

The purpose of this paper is to comparatively study the conventional, i.e. single magnet, and novel hybrid-magnet switched-flux permanent-magnet (HMSFPM) machines.

Design/methodology/approach

The HMSFPM machines utilize two magnet types, i.e. low-cost ferrites and NdFeB. Thus, a set of magnet ratios (?), defined as the quotient of the NdFeB volume to the total PM volume, is introduced. This allows any desired performance and cost trade-off to be designed. Series- and parallel-excited magnet configurations are investigated using 2-dimensional finite element analysis.

Findings

The torque of the HMSFPM machines is lower than the NdFeB SFPM machine but the flux-weakening performance is improved for similar machine efficiency. If the machine dimensions are unconstrained, the HMSFPM machines can have the same torque for reduced material costs and a moderate increase in machine dimensions. Ferrite SFPM machines have the lowest cost for the same torque but a significant increase in machine dimensions is required. Finally, the series-excited HMSFPM machine is the preferred over the parallel-excited HMSFPM machine because it has superior demagnetization withstand capability.

Research limitations/implications

Mechanical and winding eddy current losses are not considered in the efficiency map calculations.

Originality/value

The NdFeB SFPM, ferrite SFPM, series-excited HMSFPM, and the parallel-excited HMSFPM machines are compared for their electromagnetic performance, flux-weakening, PM demagnetization, efficiency, and material costs.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Y. Guan, Z.Q. Zhu, I.A.A. Afinowi, J.C. Mipo and P. Farah

The purpose of this paper is to minimize the optimization parameter number of synchronous reluctance machine (SynRM) and permanent magnet (PM) assisted SynRM, and compare their…

Abstract

Purpose

The purpose of this paper is to minimize the optimization parameter number of synchronous reluctance machine (SynRM) and permanent magnet (PM) assisted SynRM, and compare their relative merits with interior permanent magnet (IPM) machine for electric vehicle applications, in terms of electromagnetic performance and material cost.

Design/methodology/approach

The analysis of electromagnetic performance is based on finite element analysis, by using software MAXWELL. The genetic algorithm is utilized for optimization.

Findings

The rotor design of SynRM can be significantly simplified by imposing some reasonable conditions. The number of rotor design parameters can be reduced to three. The electromagnetic performance of SynRM is much poorer than that of IPM, although the material cost is much cheaper, approximately one-third of IPM. The ferrite-SynRM is competitive and even better than IPM especially for high electric loading, in terms of torque capability, torque-speed characteristic, power factor, threshold speed and efficiency. In addition, ferrite-assisted SynRM has great advantage over IPM in material cost, 55 percent cheaper. The performance of NdFeB-assisted SynRM is close to IPM in terms of torque capability, torque-speed characteristic, power factor, torque ripple and efficiency. The material cost of NdFeB-assisted SynRM is ∼25 percent lower than IPM.

Originality/value

Some conditions, which can simplify the optimization of SynRM rotor, are discussed. The electromagnetic performances and material costs of SynRM, ferrite-assisted, NdFeB-assisted SynRMs and IPM are quantitatively compared and discussed.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 March 2016

Y. Guan, Z.Q. Zhu, I.A.A. Afinowi, J.C. Mipo and P. Farah

The purpose of this paper is to make a quantitative comparison between induction machine (IM) and interior permanent magnet machine (IPM) for electric vehicle applications, in…

Abstract

Purpose

The purpose of this paper is to make a quantitative comparison between induction machine (IM) and interior permanent magnet machine (IPM) for electric vehicle applications, in terms of electromagnetic performance and material cost.

Design/methodology/approach

The analysis of IM is based on an analytical method, which has been validated by test. The analysis of IPM is based on finite element analysis. The popular Toyota Prius 2010 IPM is adopted directly, and the IM is designed with the same stator outer diameter and stack length as Prius 2010 IPM for a fair comparison.

Findings

The torque capability of IM is lower than IPM for low electric loading and competitive to IPM for high electric loading. The maximum torque/power-speed characteristic of IM is competitive to IPM; while the rated torque/power-speed characteristic of IM is poorer than IPM. The power factor of IM is competitive and even better than IPM for high electric loading in low-speed region. The torque ripple of IM is comparable to IPM for high electric loading and much lower than IPM for low electric loading. The overall efficiency of IM is lower than IPM, and the maximum efficiency of copper squirrel cage IM is approximately 2-3 percent lower than IPM. The material cost of IM is about half of IPM when IM and IPM are designed with the same stator outer diameter and stack length.

Originality/value

The electromagnetic performances and material costs of IM and IPM are quantitatively compared and discussed.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 35 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 30 September 2022

Ali Jamali Fard and Mojtaba Mirsalim

Rotor shape optimization is crucial in designing synchronous reluctance machines (SynRMs) because the machine performance is directly proportional to the rotor’s magnetic saliency…

Abstract

Purpose

Rotor shape optimization is crucial in designing synchronous reluctance machines (SynRMs) because the machine performance is directly proportional to the rotor’s magnetic saliency ratio. The rotor geometry in synchronous reluctance machines is complex, and many geometrical parameters must be optimized. When fluid flux-barrier geometry is desirable, using analytic equations to prepare the rotor geometry for finite element analysis could be tedious. This paper aims to provide a robust numerical procedure to draw the fluid flux-barrier geometry in transversally laminated radial flux inner and outer rotor SynRMs by directly solving the magnetic vector potential equation using the finite difference method..

Design/methodology/approach

In this paper, the goal is to have a robust procedure for drawing the rotor geometry for an arbitrary number of slots (Ns), poles (p) and flux-barrier layers (Nfb). Therefore, this paper targeted several combinations to investigate the performance of the proposed algorithm. The MATLAB software is used to implement the proposed algorithm. The ANSYS Maxwell software is used for counterpart finite element simulation to check the correctness of the results derived by the proposed method.

Findings

Several inner and outer rotor SynRMs considering a different number of poles and a different number of flux-barrier layers per pole are studied to investigate the performance of the proposed algorithm. Results corresponding to each case are presented, and it is shown that the method is robust, flexible and fast enough, which could be used for the generation of the rotor geometry for the finite element analysis effectively.

Originality/value

The value of the proposed algorithm is its simplicity and straightforwardness in its implementation for the preparation of the rotor geometry with the desired fluid flux-barrier layer curvature resolution suitable for the finite element analysis. The procedure presented in this paper is based on the ideal magnetic loading concept, and in future works, a similar idea could be used for linear and axial flux SynRMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 12 April 2022

Ali Jamali Fard and Mojtaba Mirsalim

During the design process of synchronous reluctance motors (SynRMs), one crucial step, after its main dimensioning, is optimizing the rotor geometry for maximum average torque and…

109

Abstract

Purpose

During the design process of synchronous reluctance motors (SynRMs), one crucial step, after its main dimensioning, is optimizing the rotor geometry for maximum average torque and minimum torque ripple. However, because of the complexity of rotor flux-barrier layers geometry, the number of rotor geometrical parameters is high and this step could be quite complex and time-consuming. To obtain a good performance, one needs a robust algorithm to optimize the rotor geometry. The purpose of this paper is to present a sequential iterative method for rotor shape optimization in SynRMs based on the per-unit rotor model to maximize the average torque and minimize the torque ripple.

Design/methodology/approach

In the presented method, at first, rotor geometrical parameters are classified into several groups based on their geometrical similarities, and then optimization is done on these individual groups iteratively. The method starts with an arbitrary feasible rotor geometry and proceeds to optimize it. Because the method’s performance depends on initial rotor geometry, different cases are studied to investigate the convergence and robustness of the method. The MATLAB software is used to implement the optimization algorithm, and the ANSYS Maxwell software is used for the finite element analysis.

Findings

The performance of the proposed method is studied on a three-phase 0.75 kW-1,500 rpm permanent magnet assisted SynRM. The results show that the method improves the average torque while reducing the torque ripple. Even if the method starts with an inappropriate initial rotor geometry, it is robust enough and converges within an acceptable number of iterations.

Originality/value

The value of this paper is in introducing a per-unit rotor model. When the authors optimize the rotor geometry for a specific motor rating, it can be scaled up or down for other ratings with little effort. In this work, the number of rotor poles is four and the number of rotor flux-barrier layers per pole is three. Other combinations could be analyzed in future studies.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 January 2017

Nagarajan V.S., Balaji Mahadevan, Kamaraj V., Arumugam R., Ganesh Nagarajan, Srivignesh S. and Suudharshana M.

The purpose of this paper is performance enhancement of ferrite-assisted synchronous reluctance (FASR) motor using multi-objective differential evolution (MODE) algorithm…

Abstract

Purpose

The purpose of this paper is performance enhancement of ferrite-assisted synchronous reluctance (FASR) motor using multi-objective differential evolution (MODE) algorithm, considering the significant geometric design parameters.

Design/methodology/approach

This work illustrates the optimization of FASR motor using MODE algorithm to enhance the performance of the motor considering barrier angular positions, magnet height, magnet axial length, flux barrier angles of the rotor and air gap length. In the optimization routine to determine the performance parameters, generalized regression neural network-based interpolation is used. The results of MODE are validated with multi-objective particle swarm optimization algorithm and multi-objective genetic algorithm.

Findings

The design optimization procedure developed in this work for FASR motor aims at achieving multiple objectives, namely, average torque, torque ripple and efficiency. With multiple objectives, it is essential to give the designer the tradeoff between different objectives so as to arrive at the best design suitable for the application. The results obtained in this work justify the application of the MODE approach for FASR motor to determine the various feasible solutions within the bounds of the design.

Research limitations/implications

Analysis, design and optimization of synchronous reluctance motor has been explored in detail to establish its potential for variable speed applications. In recent years, the focus is toward the electromagnetic design of hybrid configurations such as FASR motor. It is in this preview this work aims to achieve optimal design of FASR motor using multi-objective optimization approach.

Practical/implications

The results of this work will supplement and encourage the application of FASR motor as a viable alternate for variable speed drive applications. In addition, the application of MODE to arrive at better design solutions is demonstrated.

Originality/value

The approach presented in this work focuses on obtaining enhanced design of FASR motor considering average torque, torque ripple and efficiency as performance measures. The posteriori analysis of optimization provides an insight into the choice of parameters involved and their effects on the design of FASR motor. The efficacy of the optimization routine is justified in comparison with other multi-objective algorithms.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 6 of 6