Search results

1 – 10 of over 2000
Article
Publication date: 27 June 2022

Rong Wang, Yongxiong Chen, Xiuqian Peng, Nan Cong, Delei Fang, Xiubing Liang and Jianzhong Shang

Three-dimensional (3D) printing provides more possibilities for composite manufacturing. Composites can no longer just be layered or disorderly mixed as before. This paper aims to…

Abstract

Purpose

Three-dimensional (3D) printing provides more possibilities for composite manufacturing. Composites can no longer just be layered or disorderly mixed as before. This paper aims to introduce a new algorithm for dual-material 3D printing design.

Design/methodology/approach

A novel topology design method: solid isotropic material with penalization (SIMP) for hybrid lattice structure is introduced in this paper. This algorithm extends the traditional SIMP topology optimization, transforming the original 0–1 optimization into A–B optimization. It can be used to optimize the spatial distribution of bi-material composite structures.

Findings

A novel hybrid structure with high damping and strength efficiency is studied as an example in this work. By using the topology method, a hybrid Kagome structure is designed. The 3D Kagome truss with face sheet was manufactured by selective laser melting technology, and the thermosetting polyurethane was chosen as filling material. The introduced SIMP method for hybrid lattice structures can be considered an effective way to improve lattice structures’ stiffness and vibration characteristics.

Originality/value

The fabricated hybrid lattice has good stiffness and damping characteristics and can be applied to aerospace components.

Details

Rapid Prototyping Journal, vol. 28 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 July 2020

Ashraf Yahya, Syed M. Usman Ali and Muhammad Farhan Khan

Multilevel inverter (MLI) is an established design approach for inverter applications in medium-voltage and high-voltage range of applications. An asymmetric design synthesizes…

Abstract

Purpose

Multilevel inverter (MLI) is an established design approach for inverter applications in medium-voltage and high-voltage range of applications. An asymmetric design synthesizes multiple DC input voltage sources of unequal magnitudes to generate a high-quality staircase sinewave comprising a large number of steps or levels. However, the implications of using sources of unequal magnitudes results in the requirements of a large variety of inverter switches and higher magnitudes of the total blocking voltage (TBV) rating of the inverter, which increase the cost. The purpose of this study is to present a solution based on algorithms for establishing DC source magnitudes and other design parameters.

Design/methodology/approach

The approach used in this study is to develop algorithms that bring an asymmetric cascaded MLI (ACMLI) design close to symmetric design. This approach then reduces the variety of switch ratings and minimizes the TBV of the inverter. Thus, the benefits of both asymmetric design (generation of a large number of voltage levels in the output waveform) and symmetric design (modularity) are achieved. The proposed algorithms can be applied to a number of ACMLI topologies, including classical cascaded H-bridge (CHB). The effectiveness of the proposed algorithms is validated by simulation in Matlab-Simulink and experimental setup.

Findings

Two new algorithms are proposed that reduce the number of variety of switches to just three. The variety can further be reduced to two under a specified condition. The algorithms are compared with the existing ones, and the results are promising in minimizing the TBV rating of the inverter, which results in cost reduction as well. For a specific case of four CHBs, the proposed Algorithm-1 produced 27% and Algorithm-2 produced 53% higher levels. Moreover, the presented algorithms produced minimum values of the TBV and resulted in minimum cost of inverter.

Originality/value

The proposed algorithms are novel in structure and have achieved the targeted values of minimized switch variety and reduced TBV ratings. Due to less variety, the inverter achieves a near symmetric design, which enables to attain the added advantages of modularity and reduced difference of power sharing among the DC sources.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 8 June 2022

Chinnaraj Gnanavel and Kumarasamy Vanchinathan

These implementations not only generate excessive voltage levels to enhance the quality of power but also include a detailed investigating of the various modulation methods and…

Abstract

Purpose

These implementations not only generate excessive voltage levels to enhance the quality of power but also include a detailed investigating of the various modulation methods and control schemes for multilevel inverter (MLI) topologies. Reduced harmonic modulation technology is used to produce 11-level output voltage with the production of renewable energy applications. The simulation is done in the MATLAB/Simulink for 11-level symmetric MLI and is correlated with the conventional inverter design.

Design/methodology/approach

This paper is focused on investigating the different types of asymmetric, symmetric and hybrid topologies and control methods used for the modular multilevel inverter (MMI) operation. Classical MLI configurations are affected by performance issues such as poor power quality, uneconomic structure and low efficiency.

Findings

The variations in both carrier and reference signals and their performance are analyzed for the proposed inverter topologies. The simulation result compares unipolar and bipolar pulse-width modulation (PWM) techniques with total harmonic distortion (THD) results. The solar-fed 11-level MMI is controlled using various modulation strategies, which are connected to marine emergency lighting loads. Various modulation techniques are used to control the solar-fed 11-level MMI, which is connected to marine emergency lighting loads. The entire hardware system is controlled by using SPARTAN 3A field programmable gate array (FPGA) board and the least harmonics are obtained by improving the power quality.

Originality/value

The simulation result compares unipolar and bipolar PWM techniques with THD results. Various modulation techniques are used to control the solar-fed 11-level MMI, which is connected to marine emergency lighting loads. The entire hardware system is controlled by a SPARTAN 3A field programmable gate array (FPGA) board, and the power quality is improved to achieve the lowest harmonics possible.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 November 2023

Cheng Peng, He Cheng, Tong Zhang, Jing Wu, Fandi Lin and Jinglong Chu

This paper aims to further develop stator permanent magnet (PM) type memory machines by providing generalized design guidelines for double-stator memory machines (DSMMs) with…

54

Abstract

Purpose

This paper aims to further develop stator permanent magnet (PM) type memory machines by providing generalized design guidelines for double-stator memory machines (DSMMs) with hybrid PMs. This paper discusses the design experience of DSMMs and presents a comparative study of radial magnetization (RM) and circumferential magnetization (CM) types.

Design/methodology/approach

It begins with an introduction to RM and CM operating principles and magnetization mechanisms. Then, a comparative study is conducted for one of the RM-DSMM rotor pole pairs, inner and outer stator clamping angles and low coercive force PMs thickness. Finally, the two machines’ finite element simulation performance is compared. The validity of the proposed machine structure is demonstrated.

Findings

In this paper, the double-stator structure is extended to parallel hybrid PM memory machines, and two novel DSMMs with RM and CM configurations are proposed. Two types of DSMMs have PMs and magnetizing windings on the inner stator and armature windings on the outer stator. The main difference between the two is the arrangement of PMs on the inner stator.

Originality/value

Conventional stator PM memory machines have geometrical space conflicts between the PM and armature windings. The proposed double-stator structure can alleviate these conflicts and increase the torque density accordingly. In addition, this paper contributes to comparing the arrangement of hybrid PMs for DSMMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 February 2022

Jayarama Pradeep, Krishnakumar Vengadakrishnan, Anbarasan Palani and Thamizharasan Sandirasegarane

Multilevel inverters become very popular in medium voltage applications owing to their inherent capability of reconciling stepped voltage waveform with reduced harmonic distortion…

Abstract

Purpose

Multilevel inverters become very popular in medium voltage applications owing to their inherent capability of reconciling stepped voltage waveform with reduced harmonic distortion and electromagnetic interference. They have several disadvantages like more number of switching devices required and devices with high voltage blocking and need additional dc sources count to engender particular voltage. So this paper aims to propose a novel tri-source symmetric cascaded multilevel inverter topology with reduced number of switching components and dc sources.

Design/methodology/approach

A novel multilevel inverter has been suggested in this study, offering minimal switch count in the conduction channel for the desired voltage level under symmetric and asymmetric configurations. This novel topology is optimized to prompt enormous output voltage levels by employing constant power switches count and/or dc sources of voltage. The topology claims its advantages in generating higher voltage levels with lesser number of voltage sources, gate drivers and dc voltage sources.

Findings

The consummation of the proposed arrangement is verified in Matlab/Simulink R2015b, and an experimental prototype for 7-level, 13-level, 21-level, 29-level, 25-level and 49-level operation modes is constructed to validate the simulation results.

Originality/value

The proposed topology operated with six new algorithms for asymmetrical configuration to propel increased number of voltage levels with reduced power components.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 12 March 2018

Rong Wang, Jianzhong Shang, Xin Li, Zhuo Wang and Zirong Luo

This paper aims to present a new topology method in designing the lightweight and complex structures for 3D printing.

Abstract

Purpose

This paper aims to present a new topology method in designing the lightweight and complex structures for 3D printing.

Design/methodology/approach

Computer-aided design (CAD) and topology design are the two main approaches for 3D truss lattices designing in 3D printing. Though these two ways have their own advantages and have been used by the researchers in different engineering situations, these two methods seem to be incompatible. A novel topology method is presented in this paper which can combine the merits of both CAD and topology design. It is generally based on adding materials to insufficient parts in a given structure so the resulting topology evolves toward an optimum.

Findings

By using the topology method, an optimized-Kagome structure is designed and both 3D original-Kagome structure and 3D optimized-Kagome structure are manufactured by fused deposition modeling (FDM) 3D printer with ABS and the compression tests results show that the 3D optimized-Kagome has a higher specific stiffness and strength than the original one.

Originality/value

The presented topology method is the first work that using the original structure-based topology algorithm other than a boundary condition-based topology algorithm for 3D printing lattice and it can be considered as general way to optimize a commonly used light-weight lattice structure in strength and stiffness.

Details

Rapid Prototyping Journal, vol. 24 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 October 2018

Lei Wang, Haijun Xia, Yaowen Yang, Yiru Cai and Zhiping Qiu

The purpose of this paper is to propose a novel non-probabilistic reliability-based topology optimization (NRBTO) method for continuum structural design under interval…

Abstract

Purpose

The purpose of this paper is to propose a novel non-probabilistic reliability-based topology optimization (NRBTO) method for continuum structural design under interval uncertainties of load and material parameters based on the technology of 3D printing or additive manufacturing.

Design/methodology/approach

First, the uncertainty quantification analysis is accomplished by interval Taylor extension to determine boundary rules of concerned displacement responses. Based on the interval interference theory, a novel reliability index, named as the optimization feature distance, is then introduced to construct non-probabilistic reliability constraints. To circumvent convergence difficulties in solving large-scale variable optimization problems, the gradient-based method of moving asymptotes is also used, in which the sensitivity expressions of the present reliability measurements with respect to design variables are deduced by combination of the adjoint vector scheme and interval mathematics.

Findings

The main findings of this paper should lie in that new non-probabilistic reliability index, i.e. the optimization feature distance which is defined and further incorporated in continuum topology optimization issues. Besides, a novel concurrent design strategy under consideration of macro-micro integration is presented by using the developed RBTO methodology.

Originality/value

Uncertainty propagation analysis based on the interval Taylor extension method is conducted. Novel reliability index of the optimization feature distance is defined. Expressions of the adjoint vectors between interval bounds of displacement responses and the relative density are deduced. New NRBTO method subjected to continuum structures is developed and further solved by MMA algorithms.

Article
Publication date: 3 August 2021

Sumathy P., Navamani Divya, Jagabar Sathik, Lavanya A., Vijayakumar K. and Dhafer Almakhles

This paper aims to review comprehensively the different voltage-boosting techniques and classifies according to their voltage gain, stress on the semiconductor devices, count of…

Abstract

Purpose

This paper aims to review comprehensively the different voltage-boosting techniques and classifies according to their voltage gain, stress on the semiconductor devices, count of the total components and their prominent features. Hence, the focus is on non-isolated step-up converters. The converters categorized are analyzed according to their category with graphical representation.

Design/methodology/approach

Many converters have been reported in recent years in the literature to meet our power requirements from mill watts to megawatts. Fast growth in the generation of renewable energy in the past few years has promoted the selection of suitable converters that directly impact the behaviour of renewable energy systems. Step-up converters are a fast-emerging switching power converter in various power supply units. Researchers are more attracted to the derivation of novel topology with a high voltage gain, low voltage and current stress, high efficiency, low cost, etc.

Findings

A comparative study is done on critical metrics such as voltage gain, switch voltage stress and component count. Besides, the converters are also summarized based on their advantages and disadvantages. Furthermore, the areas that need to be explored in this field are identified and presented.

Originality/value

Types of analysis usually performed in dc converter and their needs with the areas need to be focused are not yet completely reviewed in most of the articles. This paper gives an eyesight on these topics. This paper will guide the researchers to derive and suggest a suitable topology for the chosen application. Moreover, it can be used as a handbook for studying the various topologies with their shortfalls, which will provide a way for researchers to focus.

Article
Publication date: 5 June 2009

Danilo Ferreira de Carvalho and Carmelo José Albanez Bastos‐Filho

Particle swarm optimization (PSO) has been used to solve many different types of optimization problems. In spite of this, the original version of PSO is not capable to find…

Abstract

Purpose

Particle swarm optimization (PSO) has been used to solve many different types of optimization problems. In spite of this, the original version of PSO is not capable to find reasonable solutions for some types of problems. Therefore, novel approaches to deal with more sophisticated problems are required. Many variations of the basic PSO form have been explored, targeting the velocity update equation. Other approaches attempt to change the communication topology inside the swarm. The purpose of this paper is to propose a topology based on the concept of clans.

Design/methodology/approach

First of all, this paper presents a detailed description of its proposal. After that, it shows a graphical convergence analysis for the Rosenbrock benchmark function. In the sequence, a convergence analysis for clan PSO with different parameters is performed. A comparison with star, ring, focal, von Neumann and four clusters topologies is also performed.

Findings

The paper's simulation results have shown that the proposal obtained better results than the other topologies for the benchmark functions selected for this paper.

Originality/value

The proposed topology for PSO based on clans provides a novel form for information distribution inside the swarm. In this approach, the topology is determined dynamically during the search process, according to the success rate inside each clan.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 2 no. 2
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 14 December 2018

Daicong Da, Xiangyang Cui, Kai Long, Yong Cai and Guangyao Li

The optimal material microstructures in pure material design are no longer efficient or optimal when accounting macroscopic structure performance with specific boundary…

Abstract

Purpose

The optimal material microstructures in pure material design are no longer efficient or optimal when accounting macroscopic structure performance with specific boundary conditions. Therefore, it is important to provide a novel multiscale topology optimization framework to tailor the topology of structure and the material to achieve specific applications. In comparison with porous materials, composites consisting of two or more phase materials are more attractive and advantageous from the perspective of engineering application. This paper aims to provide a novel concurrent topological design of structures and microscopic materials for thermal conductivity involving multi-material topology optimization (material distribution) at the lower scale.

Design/methodology/approach

In this work, the effective thermal conductivity properties of microscopic three or more phase materials are obtained via homogenization theory, which serves as a bridge of the macrostructure and the periodic material microstructures. The optimization problem, including the topological design of macrostructures and inverse homogenization of microscopic materials, are solved by bi-directional evolutionary structure optimization method.

Findings

As a result, the presented framework shows high stability during the optimization process and requires little iterations for convergence. A number of interesting and valid macrostructures and material microstructures are obtained in terms of optimal thermal conductive path, which verify the effectiveness of the proposed mutliscale topology optimization method. Numerical examples adequately consider effects of initial guesses of the representative unit cell and of the volume constraints of adopted base materials at the microscopic scale on the final design. The resultant structures at both the scales with clear and distinctive boundary between different phases, making the manufacturing straightforward.

Originality/value

This paper presents a novel multiscale concurrent topology optimization method for structures and the underlying multi-phase materials for thermal conductivity. The authors have carried out the concurrent multi-phase topology optimization for both 2D and 3D cases, which makes this work distinguished from existing references. In addition, some interesting and efficient multi-phase material microstructures and macrostructures have been obtained in terms of optimal thermal conductive path.

1 – 10 of over 2000