Search results

1 – 10 of 72
Article
Publication date: 19 January 2015

Liu Linxian, Zhang Wendong, Zhang Guojun, Guan Linggang, Xue Chenyang, Zhang Hui and Xue Nan

The purpose of this paper is to develop a novel MEMS vector hydrophone with the key features of smaller size, better consistency, higher sensitivity and directional reception, and…

Abstract

Purpose

The purpose of this paper is to develop a novel MEMS vector hydrophone with the key features of smaller size, better consistency, higher sensitivity and directional reception, and to develop a highly effective and economical obstacle avoidance sonar system. Currently, the typical vector hydrophones are resonant vector hydrophones based on the accelerometer, which greatly increases the volume and constrains the detection sensitivity. Also, because the system is composed of a number of devices, its size is difficult to be reduced.

Design/methodology/approach

A novel double T-shape MEMS vector hydrophone is proposed with a fish’s lateral line organs as prototypes. The structure size and layout location of the piezoresistors were determined by simulation analysis, and the double T-shape microstructure was fabricated integrally by MEMS manufacturing technology, after which, the acoustic package of the microstructure was completed and the prototype was produced. Finally, the packaged hydrophone was calibrated in a standing wave field in the first-class national-defense underwater acoustic calibration station of China. Also, the design and test of an obstacle avoidance sonar system based on the vector hydrophone were completed.

Findings

The calibration data show that the double T-shape vector hydrophone has a flat frequency response curve, exhibits a sensitivity of −180 dB (1 kHz, 0 dB reference 1 V/uPa) and shows a good directivity pattern in the form of an “8” shape. The test results of the obstacle avoidance sonar system further verify the feasibility of detecting underwater acoustic signals.

Research limitations/implications

The next work is to increase the sensitivity by optimizing the microstructure and to realize orientation by organizing array.

Practical implications

The hydrophone has the advantages of smaller size, lower cost and directional reception. It can be used to develop highly effective and economical obstacle avoidance sonar system, thus solving the problems of water transport efficiency and traffic safety. The hydrophone has broad application prospects and a huge market potential in the civilian fields.

Originality/value

The MEMS technology and innovative bionic microstructure enable the miniaturization and low cost of the hydrophone. The hydrophone is easy to form array and can narrow the array aperture greatly. So, the hydrophone can be widely used in civil sonar systems.

Details

Sensor Review, vol. 35 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 June 2015

Mengran Liu, Ze ming Jian, Guojun Zhang, Nan Guo and Wendong Zhang

The purpose of this paper is to present a novel nitrile butadiene rubber (NBR) packaging structure, which can solve the problems of the low sensitivity, narrow frequency band and…

Abstract

Purpose

The purpose of this paper is to present a novel nitrile butadiene rubber (NBR) packaging structure, which can solve the problems of the low sensitivity, narrow frequency band and fluctuating frequency response curve of the MEMS bionic vector hydrophone.

Design/methodology/approach

A 0.05-mm-thick NBR sound-transparent cap was designed by theoretical analysis and simulation to reduce the signal attenuation caused by the packaging structure, and the frequency band of the hydrophone has been extended to 4 kHz. In this work, the vector hydrophone was fabricated by the MEMS technology and packaged with the NBR sound-transparent cap. The performance indicators were calibrated in the National Defence Underwater Acoustics Calibration Laboratory of China.

Findings

The results show that the sensitivity of NBR-packaged hydrophone reaches −170 dB (±2 dB), and the difference is less than 1 dB compared to bare chip. And the frequency band is 50 Hz-4 kHz. The hydrophone also has good directional pattern in the form of an 8-shape, and the pressure-resisting ability is more than 2 MPa.

Originality/value

The packaging structure significantly increases the sensitivity of the hydrophone and broadens the frequency band, providing a new method in the packaging design for MEMS hydrophone.

Details

Sensor Review, vol. 35 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 31 March 2020

Zhenzhen Shang, Wendong Zhang, Guojun Zhang, Xiaoyong Zhang, Lansheng Zhang and Renxin Wang

The problem of port and starboard ambiguity will exist when only utilize the vector or scalar parameters. Meanwhile, the amplitude-phase error between the vector and scalar can…

Abstract

Purpose

The problem of port and starboard ambiguity will exist when only utilize the vector or scalar parameters. Meanwhile, the amplitude-phase error between the vector and scalar can also cause this problem. In this paper, a compound MEMS vector hydrophone which contains cilia vector microstructure and piezoelectric ceramic tube has been presented to solve the problem. Compared with traditional MEMS vector hydrophone, the compound MEMS vector hydrophone can realize the measurement of sound pressure and vibration velocity simultaneously.

Design/methodology/approach

A compound MEMS vector hydrophone has been presented. The unipolar directivity of the combined signal which combine the acoustic pressure and vibration velocity is used to achieve the direction of arrival (DOA). This paper introduced the working principle and the target detection mechanism of the compound vector hydrophone. The amplitude and phase error are analyzed and corrected in the standing wave tube. After that, the authors use beam-forming algorithm to estimate the DOA.

Findings

The experimental results in the standing wave tube and the external field verified the vector hydrophone's directional accuracy up to 1 and 5 degrees, respectively.

Practical implications

The research of compound vector hydrophone plays an important role in marine acoustic exploration and engineering applications.

Originality/value

This research provides a basis for MEMS hydrophone directivity theory. The compound vector hydrophone has been applied in the underwater location, with a huge market potential in underwater detection systems.

Article
Publication date: 19 July 2024

Zican Chang, Guojun Zhang, Wenqing Zhang, Yabo Zhang, Li Jia, Zhengyu Bai and Wendong Zhang

Ciliated microelectromechanical system (MEMS) vector hydrophones pick up sound signals through Wheatstone bridge in cross beam-ciliated microstructures to achieve information…

Abstract

Purpose

Ciliated microelectromechanical system (MEMS) vector hydrophones pick up sound signals through Wheatstone bridge in cross beam-ciliated microstructures to achieve information transmission. This paper aims to overcome the complexity and variability of the marine environment and achieve accurate location of targets. In this paper, a new method for ocean noise denoising based on improved complete ensemble empirical mode decomposition with adaptive noise combined with wavelet threshold processing method (CEEMDAN-WT) is proposed.

Design/methodology/approach

Based on the CEEMDAN-WT method, the signal is decomposed into different intrinsic mode functions (IMFs), and relevant parameters are selected to obtain IMF denoised signals through WT method for the noisy mode components with low sample entropy. The final pure signal is obtained by reconstructing the unprocessed mode components and the denoising component, effectively separating the signal from the wave interference.

Findings

The three methods of empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD) and CEEMDAN are compared and analyzed by simulation. The simulation results show that the CEEMDAN method has higher signal-to-noise ratio and smaller reconstruction error than EMD and EEMD. The feasibility and practicability of the combined denoising method are verified by indoor and outdoor experiments, and the underwater acoustic experiment data after processing are combined beams. The problem of blurry left and right sides is solved, and the high precision orientation of the target is realized.

Originality/value

This algorithm provides a theoretical basis for MEMS hydrophones to achieve accurate target positioning in the ocean, and can be applied to the hardware design of sonobuoys, which is widely used in various underwater acoustic work.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 30 April 2024

Xiangkai Zhang, Renxin Wang, Wenping Cao, Guochang Liu, Haoyu Tan, Haoxuan Li, Jiaxing Wu, Guojun Zhang and Wendong Zhang

Human-induced marine environmental noise, such as commercial shipping and seismic exploration, is concentrated in the low-frequency range. Meanwhile, low-frequency sound signals…

Abstract

Purpose

Human-induced marine environmental noise, such as commercial shipping and seismic exploration, is concentrated in the low-frequency range. Meanwhile, low-frequency sound signals can achieve long-distance propagation in water. To meet the requirements of long-distance underwater detection and communication, this paper aims to propose an micro-electro-mechanical system (MEMS) flexible conformal hydrophone for low-frequency underwater acoustic signals. The substrate of the proposed hydrophone is polyimide, with silicon as the piezoresistive unit.

Design/methodology/approach

This paper proposes a MEMS heterojunction integration process for preparing flexible conformal hydrophones. In addition, sensors prepared based on this process are non-contact flexible sensors that can detect weak signals or small deformations.

Findings

The experimental results indicate that making devices with this process cannot only achieve heterogeneous integration of silicon film, metal wire and polyimide, but also allow for customized positions of the silicon film as needed. The success rate of silicon film transfer printing is over 95%. When a stress of 1 Pa is applied on the x-axis or y-axis, the maximum stress on Si as a pie-zoresistive material is above, and the average stress on the Si film is around.

Originality/value

The flexible conformal vector hydrophone prepared by heterogeneous integration technology provides ideas for underwater acoustic communication and signal acquisition of biomimetic flexible robotic fish.

Details

Sensor Review, vol. 44 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 11 April 2023

Zhenzhen Shang, Libo Yang, Wendong Zhang, Guojun Zhang, Xiaoyong Zhang, Hairong Kou, Junbing Shi and Xin Xue

This paper aims to solve the problem that strong noise interference seriously affects the direction of arrival (DOA) estimation in complex underwater acoustic environment. In this…

Abstract

Purpose

This paper aims to solve the problem that strong noise interference seriously affects the direction of arrival (DOA) estimation in complex underwater acoustic environment. In this paper, a combined noise reduction algorithm and micro-electro-mechanical system (MEMS) vector hydrophone DOA estimation algorithm based on singular value decomposition (SVD), variational mode decomposition (VMD) and wavelet threshold denoising (WTD) is proposed.

Design/methodology/approach

Firstly, the parameters of VMD are determined by SVD, and the VMD method can decompose the signal into multiple intrinsic mode functions (IMFs). Secondly, the effective IMF component is determined according to the correlation coefficient criterion and the IMF less than the threshold is processed by WTD. Then, reconstruction is carried out to achieve the purpose of denoising and calibration baseline drift. Finally, DOA estimation is achieved by the combined directional algorithm of preprocessed signal.

Findings

Simulation and field experiments results show that the algorithm has good noise reduction and baseline drift correction effects for nonstationary underwater signals, and high-precision azimuth estimation is realized.

Originality/value

This research provides the basis for MEMS hydrophone detection and positioning and has great engineering significance in underwater detection system.

Article
Publication date: 5 December 2017

Yang Zi Kang, Chi Feng, Liang Zhi Liu, Shan Gao and Yan Cang

Hydroelectric power is widely used because it is environmental friendly, renewable and green. The cavitation is an inevitable phenomenon during the operation of hydro turbine…

Abstract

Purpose

Hydroelectric power is widely used because it is environmental friendly, renewable and green. The cavitation is an inevitable phenomenon during the operation of hydro turbine, which is related to the efficiency and service life of the unit. This paper aims to discriminate the phenomenon of the incipient cavitation, prevent the early destruction and avoid the irreversible damage to hydro turbine.

Design/methodology/approach

The paper tries to find out the characteristics of cavitation entirely through a variety of features. The method comprises collection of the signals using a hydrophone, acceleration sensor and acoustic emission sensor; analyzing cavitation signal by using the way of wavelet time-frequency, peak factor and power spectral density; and comparing the different wavelet basis for analyzing signals and find the most suitable one.

Findings

The analyzed results show that the wavelet basis of morlet is more suitable for the cavitation signals. The hydrophone can distinguish the different operating conditions and discriminate the difference between the phenomenon of incipient cavitation and the other state of cavitation. The results show that when the hydrophone and acceleration sensors are used, the accuracy rate goes up to 75 per cent, which meets the requirements for the detection for incipient cavitation.

Originality/value

This paper focuses on finding the best sensor to discriminate the operating state of incipient cavitation to prevent early destruction.

Article
Publication date: 6 September 2019

Andreas Diermeier, Dirk Sindersberger, Peter Angele, Richard Kujat and Gareth John Monkman

Ultrasound is a well-established technology in medical science, though many of the conventional measurement systems (hydrophones and radiation force balances [RFBs]) often lack…

Abstract

Purpose

Ultrasound is a well-established technology in medical science, though many of the conventional measurement systems (hydrophones and radiation force balances [RFBs]) often lack accuracy and tend to be expensive. This is a significant problem where sensors must be considered to be “disposable” because they inevitably come into contact with biological fluids and expense increases dramatically in cases where a large number of sensors in array form are required. This is inevitably the case where ultrasound is to be used for the in vitro growth stimulation of a large plurality of biological samples in tissue engineering. Traditionally only a single excitation frequency is used (typically 1.5 MHz), but future research demands a larger choice of wavelengths for which a single broadband measurement transducer is desirable. Furthermore, because of implementation conditions there can also be large discrepancies between measurements. The purpose of this paper deals with a very cost-effective alternative to expensive RFBs and hydrophones.

Design/methodology/approach

Utilization of cost-effective piezoelectric elements as broadband sensors.

Findings

Very effective results with equivalent (if not better) accuracy than expensive alternatives.

Originality/value

This paper concentrates on how very cost-effective piezoelectric ultrasound transducers can be implemented as sensors for ultrasound power measurements with accuracy as good, if not better than those achievable using radiation force balances or hydrophones.

Article
Publication date: 16 November 2022

Mengran Liu, Qiang Zeng, Zeming Jian, Lei Nie and Jun Tu

Acoustic signals of the underwater targets are susceptible to noise, reverberation, submarine topography and biology, therefore it is difficult to precisely locate underwater…

Abstract

Purpose

Acoustic signals of the underwater targets are susceptible to noise, reverberation, submarine topography and biology, therefore it is difficult to precisely locate underwater targets. This paper proposes a new underwater Hanbury Brown-Twiss (HBT) interference passive localization method. This study aims to achieve precise location of the underwater acoustic targets.

Design/methodology/approach

The principle of HBT interference with ultrasensitive detection characteristics in optical measurements was introduced in the field of hydroacoustics. The coherence of the underwater target signal was analyzed using the HBT interference measurement principle, and the corresponding relationship between the signal coherence and target position was obtained. Consequently, an HBT interference localization model was established, and its validity was verified through simulations and experiments.

Findings

The effects of different array structures on the localization performance were obtained by simulation analysis, and the simulations confirmed that the HBT method exhibited a higher positioning accuracy than conventional beamforming. In addition, the experimental analysis demonstrated the excellent positioning performance of the HBT method, which verified the feasibility of the proposed method.

Originality/value

This study provides a new method for the passive localization of underwater targets, which may be widely used in the field of oceanic explorations.

Details

Sensor Review, vol. 42 no. 6
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 1987

V.J. Hughes, J.G. Boulton, J.M. Coles, T.R. Empson and N.J. Kerry

A new type of hydrophone using optical technologies has distinct advantages over traditional types.

Abstract

A new type of hydrophone using optical technologies has distinct advantages over traditional types.

Details

Sensor Review, vol. 7 no. 3
Type: Research Article
ISSN: 0260-2288

1 – 10 of 72