Search results

1 – 10 of over 6000
Article
Publication date: 27 January 2020

Guochang Lin, Chaonan Hu, Lin Cong and Yongtao Yao

The purpose of this paper is to developing a kind of acoustic metamaterial with wide frequency band especially in low frequency region. At the same time, its the tunability of…

Abstract

Purpose

The purpose of this paper is to developing a kind of acoustic metamaterial with wide frequency band especially in low frequency region. At the same time, its the tunability of sound insulation frequency is achieved.

Design/methodology/approach

A three-dimensional (3D) acoustic metamaterial consisting of rigid frame, spherical attachment and thin film is proposed. The material parameters and the effect of the attachment hole on the forbidden band are investigated by finite element simulation. The sound insulation effect of the structure is validated by the combination of simulation and experiment.

Findings

The results show that the elastic modulus of the structural material determines the initial frequency of the forbidden band of the proposed 3D acoustic metamaterials. The lower the elastic modulus of the structural material, the lower the initial frequency of the forbidden band. The material parameters of the frame mainly affect the initial frequency of the first forbidden band, and the material parameters of the attachment will affect both the initial and termination frequency of the first forbidden band. Holes in the attachments reduce the band gap width. The characteristic curve moves down with the increase of subtracted mass.

Research limitations/implications

The findings may greatly benefit the application of the acoustic metamaterials in the fields of sound insulation and noise reduction.

Originality/value

This acoustic metamaterial structure has excellent sound insulation performance. At the same time, the single cell structure can be assembled into any shape. The structure can achieve sound selective filtering and combination control.

Details

Pigment & Resin Technology, vol. 50 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 9 June 2023

Haylim Chha and Yongbo Peng

In real life, excitations are highly non-stationary in frequency and amplitude, which easily induces resonant vibration to structural responses. Conventional control algorithms in…

3070

Abstract

Purpose

In real life, excitations are highly non-stationary in frequency and amplitude, which easily induces resonant vibration to structural responses. Conventional control algorithms in this case cannot guarantee cost-effective control effort and efficient structural response alleviation. To this end, this paper proposes a novel adaptive linear quadratic regulator (LQR) by integrating wavelet transform and genetic algorithm (GA).

Design/methodology/approach

In each time interval, multiresolution analysis of real-time structural responses returns filtered time signals dominated by different frequency bands. Minimization of cost function in each frequency band obtains control law and gain matrix that depend on temporal-frequency band, so suppressing resonance-induced filtered response signal can be directly achieved by regulating gain matrix in the temporal-frequency band, leading to emphasizing cost-function weights on control and state. To efficiently subdivide gain matrices in resonant and normal frequency bands, the cost-function weights are optimized by a developed procedure associated to genetic algorithm. Single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) structures subjected to near- and far-fault ground motions are studied.

Findings

Resonant band requires a larger control force than non-resonant band to decay resonance-induced peak responses. The time-varying cost-function weights generate control force more cost-effective than time-invariant ones. The scheme outperforms existing control algorithms and attains the trade-off between response suppression and control force under non-stationary excitations.

Originality/value

Proposed control law allocates control force amounts depending upon resonant or non-resonant band in each time interval. Cost-function weights and wavelet decomposition level are formulated in an elegant manner. Genetic algorithm-based optimization cost-efficiently results in minimizing structural responses.

Article
Publication date: 2 February 2021

D. Srikar and Sundru Anuradha

This study aims to propose a two-element multi-input-multi-output (MIMO) antenna for cognitive radio MIMO applications to avoid the complexities involved in reconfigurable…

Abstract

Purpose

This study aims to propose a two-element multi-input-multi-output (MIMO) antenna for cognitive radio MIMO applications to avoid the complexities involved in reconfigurable antennas and improve the spectrum utilization efficiency.

Design/methodology/approach

The proposed MIMO antenna system comprises a wideband antenna that operates at 2 GHz–12 GHz for sensing the spectrum and four pairs of antennas for communication, which are single and dual-band antennas. Each pair of antennas meant for communication consists of two similar antennas. Moreover, the antennas meant for communication cover 93% of the bandwidth of the sensing antenna.

Findings

The first pair of antennas accessible at ports P2 and P6 and the second pair of antennas accessible at ports P4 and P8, which are dual-band antennas, operate at 3.05 GHz–3.85 GHz, 5.8 GHz–8 GHz and 2.05 GHz–2.55 GHz, 4.7 GHz–6.1 GHz, respectively. While the third pair of antennas accessible at ports P3 and P7 and the fourth pair of antennas accessible at ports P5 and P9 are single-band antennas and operate at 3.85 GHz–4.7 GHz and 8 GHz–11 GHz, respectively. Minimum isolations of 20 dB and 15 dB are attained between every two similar antennas for communication and between the sensing antenna and the antennas meant for communication, respectively. The correctness of the proposed antenna is verified with a fine match between the results obtained from simulations and measurements.

Originality/value

The proposed MIMO antenna possesses salient features, such as polarization diversity and performing a maximum of four communication tasks when all the white spaces are detected.

Details

Circuit World, vol. 48 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 27 July 2012

Siti Maisurah Mohd Hassan, Mohd Azmi Ismail, Nazif Emran Farid, Norman Fadhil Idham Muhammad and Ahmad Ismat Abdul Rahim

The purpose of this paper is to design and implement a fully integrated low‐phase noise and large tuning range dual‐band LC voltage‐controlled oscillator (VCO) in 0.13 μm…

Abstract

Purpose

The purpose of this paper is to design and implement a fully integrated low‐phase noise and large tuning range dual‐band LC voltage‐controlled oscillator (VCO) in 0.13 μm complementary metal oxide semiconductor (CMOS) technology.

Design/methodology/approach

Two parallel‐connected single‐band VCOs are designed to implement the proposed VCO. Adopting a simple and straight‐forward architecture, the dual‐band VCO is configured to operate at two frequency bands, which are from 1.48 GHz to 1.78 GHz and from 2.08 GHz to 2.45 GHz. A band selection circuit is designed to perform band selection process based on the controlling input signal.

Findings

The proposed VCO features phase noise of −104.7 dBc/Hz and −108.8 dBc/Hz at 1 MHz offset frequency for both low corner and high corner end of the low‐band operation. For high‐band operation, phase‐noise performance of −101.1 dBc/Hz and −110.4 dBc/Hz at 1 MHz offset frequency are achieved. The measured output power of the dual‐band VCO ranges from −8.4 dBm to −5.8 dBm and from −9.6 dBm to −8.0 dBm for low‐band and high‐band operation, respectively. It was also observed that the power differences between the fundamental spectrum and the nearby spurious tone range from −67.5 dBc to −47.7 dBc.

Originality/value

The paper is useful to both the academic and industrial fields since it promotes the concept of multi‐band or multi‐standard system which is currently in demand in the telecommunication industry.

Article
Publication date: 6 December 2022

Pallav Rawal and Sanyog Rawat

In wireless communication system, use of multiple antennas for different requirements of system will increase the system complexity. However, reconfigurable antenna is maximizing…

Abstract

Purpose

In wireless communication system, use of multiple antennas for different requirements of system will increase the system complexity. However, reconfigurable antenna is maximizing the connectivity to cover different wireless services that operate different frequency range. Pattern reconfigurable antenna can improve security, avoid noise and save energy. Due to their compactness and better performance at different applications, reconfigurable antennas are very popular among the researchers. The purpose of this work, is to propose a novel design of S-shaped antenna with frequency and pattern diversity. The pattern and frequency reconfiguration are controlled via ON/OFF states of the PIN diode.

Design/methodology/approach

The geometrical structure of the proposed antenna dimension is 18 × 18 × 0.787 mm3 with εr = 2.2 dielectric constant. Three S-shaped patches are connected to a ring patch through PIN diodes. The approximate circumference of ring patch is 18.84 mm and length of patch is 5 mm, so approximate length of radiating patch is 14.42 mm and effective dielectric constant is 1.93. Conductor backed coplanar waveguide (CPW) is used for feeding. The proposed antenna is designed and simulated on CST microwave studio and fabricated using photolithography process. Measurements have been done in anechoic chamber.

Findings

Antenna shows the dual band operation at 2.1 and 3.4 GHz frequency. The first band remains constant at 2.1 GHz resonant frequency and 200–400 MHz impedance bandwidth. Second band is switched at seven different resonant frequencies as 3.14, 3.45, 3.46, 3.68, 3.69, 3.83 and 3.86 GHz with switching of the diodes. The −10 dB bandwidth is more than 1.4 GHz.

Research limitations/implications

Pattern reconfigurability can be achieved using mechanical movement of antenna easily but it is not a reliable approach for planar antennas. Electronic switching method is used in proposed antenna. Antenna size is very small so fabrication is very crucial task. Measured results are deviated from simulation results due to fabrication error and effect of leads of diodes, connecting wires and battery.

Practical implications

The reconfiguration of the proposed antenna is controlled via ON/OFF states of the three PIN diodes. The lower band of 2.1 GHz is fixed, while second band is switched at five different resonant frequencies as 3.27, 3.41, 3.45, 3.55 and 3.88 GHz, with switching of the PIN diodes with all state of diodes and exhibit pattern reconfigurability at 2.1 GHz frequency. At second band center frequency is significantly changed with state of diodes and at 3.4 GHz pattern is also changed with state of diodes, hence antenna exhibits frequency and pattern reconfigurability.

Originality/value

A novel design of pattern and frequency reconfigurable antenna is proposed. Here, work is divided into two parts: first is frequency reconfiguration and second is radiation pattern reconfiguration. PIN diodes as switch are used to select the frequency band and reconfigure the radiation pattern. This proposed antenna design is novel dual band frequency and pattern reconfigurable antenna. It resonates at two distinct frequencies, i.e. 2.1 and 3.4 GHz, and has a pattern tilt from 0° to 355°. The conductor backed CPW feed technique is used for impedance matching.

Details

Microelectronics International, vol. 41 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 14 April 2023

Atul Varshney and Vipul Sharma

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to…

Abstract

Purpose

This paper aims to present the design development and measurement of two aerodynamic slotted X-bands back-to-back planer substrate-integrated rectangular waveguide (SIRWG/SIW) to Microstrip (MS) line transition for satellite and RADAR applications. It facilitates the realization of nonplanar (waveguide-based) circuits into planar form for easy integration with other planar (microstrip) devices, circuits and systems. This paper describes the design of a SIW to microstrip transition. The transition is broadband covering the frequency range of 8–12 GHz. The design and interconnection of microwave components like filters, power dividers, resonators, satellite dishes, sensors, transmitters and transponders are further aided by these transitions. A common planar interconnect is designed with better reflection coefficient/return loss (RL) (S11/S22 ≤ 10 dB), transmission coefficient/insertion loss (IL) (S12/S21: 0–3.0 dB) and ultra-wideband bandwidth on low profile FR-4 substrate for X-band and Ku-band functioning to interconnect modern era MIC/MMIC circuits, components and devices.

Design/methodology/approach

Two series of metal via (6 via/row) have been used so that all surface current and electric field vectors are confined within the metallic via-wall in SIW length. Introduced aerodynamic slots in tapered portions achieve excellent impedance matching and tapered junctions with SIW are mitered for fine tuning to achieve minimum reflections and improved transmissions at X-band center frequency.

Findings

Using this method, the measured IL and RLs are found in concord with simulated results in full X-band (8.22–12.4 GHz). RLC T-equivalent and p-equivalent electrical circuits of the proposed design are presented at the end.

Practical implications

The measurement of the prototype has been carried out by an available low-cost X-band microwave bench and with a Keysight E4416A power meter in the microwave laboratory.

Originality/value

The transition is fabricated on FR-4 substrate with compact size 14 mm × 21.35 mm × 1.6 mm and hence economical with IL lie within limits 0.6–1 dB and RL is lower than −10 dB in bandwidth 7.05–17.10 GHz. Because of such outstanding fractional bandwidth (FBW: 100.5%), the transition could also be useful for Ku-band with IL close to 1.6 dB.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 21 September 2022

Yujie Zhang, Wenchao Niu and Bin Li

Structural stress and strain in the key components of aircraft structure is important for structural health monitoring and strength assessment. However, the measure of dynamic…

Abstract

Purpose

Structural stress and strain in the key components of aircraft structure is important for structural health monitoring and strength assessment. However, the measure of dynamic strain is often difficult to implement because of the complex test equipment and inconvenient measure points, especially in flight test. This study aims to propose an algorithm of dynamic strain estimation using the acceleration response in time domain to simplify the measure of dynamic strain.

Design/methodology/approach

The relationship between the strain and acceleration response is established through the sinusoidal response or modal analysis, which is insensitive to the excitation position and form. A band-pass filter is used to obtain the modal acceleration response, and a filter frequency band selection method is proposed. Then, the dynamic strain at the concerned points can be estimated based on the modal superposition principle.

Findings

Simulation and experiment are implemented to validate the applicability and effectiveness of the strain estimation method. The estimated strain results agree well with numerical simulation as well as the experimental results. The simplicity and accuracy of the strain estimation method show practicability for dynamic strength and fatigue analysis in engineering applications.

Originality/value

An algorithm of dynamic strain estimation using the acceleration response in time domain is developed. A band-pass filter is used to obtain the modal acceleration response, and a filter frequency band selection method is proposed. The dynamic strain at the concerned points can be estimated based on the modal superposition principle.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 February 2020

Suresh Akkole and Vasudevan N.

Application of electromagnetic band gap (EBG) i.e. electromagnetic band gap technique and its use in the design of microstrip antenna and MIC i.e. microwave integrated circuits is…

Abstract

Purpose

Application of electromagnetic band gap (EBG) i.e. electromagnetic band gap technique and its use in the design of microstrip antenna and MIC i.e. microwave integrated circuits is becoming more attractive. This paper aims to propose a new type of EBG fractal square patch microstrip multi band fractal antenna structures that are designed and developed. Their performance parameters with and without EBG structures are investigated and minutely compared with respect to the resonance frequency, return loss, a gain of the antenna and voltage standing wave ratio.

Design/methodology/approach

The fractal antenna geometries are designed from the fundamental square patch and then EBG structures are introduced. The antenna geometry is optimized using IE3D simulation tool and fabricated on low cost glass epoxy FR4, with 1.6 mm height and dielectric materials constant of 4.4. The prototype is examined by means of the vector network analyzer and antenna patterns are tested on the anechoic chamber.

Findings

Combining the square fractal patch antenna with an application of EBG techniques, the gain of microstrip antenna has been risen up and attained good return loss as compared to the antennas without EBG structures. The designs exhibit multi-frequency band characteristics extending in between 1.70 and 7.40 GHz. Also, a decrease in antenna size of 34.84 and 59.02 per cent for the first and second iteration, respectively, is achieved for the antenna second and third without EBG. The experimental results agree with that of simulated values. The presented microstrip antenna finds uses in industrial, scientific and medical (ISM) band, Wi-Fi and C band. This antenna can also be used for satellite and radio detection and range devices for communication purposes.

Originality/value

A new type of EBG fractal square patch microstrip antenna structures are designed, developed and compared with and without EBG. Because of the application of EBG techniques, the gain of microstrip antenna has been risen up and attained good return loss as compared to the antennas without EBG structures. The designs exhibit multi-frequency band characteristics extending in between 1.70 and 7.40 GHz, which are useful for Wi-Fi, ISM and C band wireless communication.

Details

International Journal of Pervasive Computing and Communications, vol. 17 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 6 August 2019

Karthie S. and Salivahanan S.

This paper aims to present the design of a novel triangular-shaped wideband microstrip bandpass filter implemented on a low-cost substrate with a notched band for interference…

87

Abstract

Purpose

This paper aims to present the design of a novel triangular-shaped wideband microstrip bandpass filter implemented on a low-cost substrate with a notched band for interference rejection.

Design/methodology/approach

The conventional dual-stub filter is embedded with simple fractal-based triangular-circular geometries through various iterations to reject wireless local area network (WLAN) signals with a notched band at 5.8 GHz.

Findings

The filter covers a wide frequency band from 3.1 to 8.8 GHz and has a fractional bandwidth of 98 per cent with the lower passband of 57.5 per cent and upper passband of 31.6 per cent separated by a notched band at 5.8 GHz. The proposed wideband prototype bandpass filter is fabricated in FR-4 substrate using PCB technology and the simulation results are validated with measurement results which include insertion loss, return loss and group delay. The fabricated filter has a sharp rejection of 28.3 dB at 5.8 GHz. Measured results show good agreement with simulated responses. The performance of the fractal-based wideband filter is compared with other wideband bandpass filters.

Originality/value

In the proposed work, a fractal-based wideband bandpass filter with a notched band is reported. The conventional dual-stub filter is deployed with triangular-circular geometry to design a wideband filter with a notched band to suppress interference signals at WLAN frequency. The proposed wideband filter exhibits smaller size and better interference rejection compared to other wideband bandpass filter designs implemented on low-cost substrate reported in the literature. The aforementioned wideband filter finds application in wideband wireless communication systems.

Details

Circuit World, vol. 45 no. 3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 11 January 2016

Simon Forge

The aim of this paper is to consider whether it is possible to identify the future spectrum bands most suitable for the Internet of Things (IoT) from the operating factors of a…

Abstract

Purpose

The aim of this paper is to consider whether it is possible to identify the future spectrum bands most suitable for the Internet of Things (IoT) from the operating factors of a novel set of radio services for a very wide range of applications, as an aid to policy makers now facing decisions in this area.

Design/methodology/approach

The approach uses characteristics of spectrum bands against the applications’ requirements to focus on specific major traits that can be matched.

Findings

The main choice factors for spectrum are the practical application needs and the network cost model, and these are fairly useful as matching parameters. It is forecast that multiple bands will be needed and that these should be of a licence-exempt form to seed the unfettered innovation of IoT technologies and pre-empt the formation of significant market power by concerned interests.

Practical implications

The way in which spectrum is allocated today will need to be reconsidered, in the light of evolving IoT requirements, which will have increasing economic and social impacts. Policy recommendations for IoT spectrum demands are outlined, and key policy options to ensure a dynamic and trustworthy development of the IoT are put forward. For instance, regulatory barriers globally will need to be removed.

Originality/value

Current interests in the technical requirements of the IoT have not yet given a suitable analysis of the potential spectrum uses, because too often, it is assumed that previous models of spectrum allocation will continue in the future, without consideration of the economic pressures and social context.

Details

INFO, vol. 18 no. 1
Type: Research Article
ISSN: 1463-6697

Keywords

1 – 10 of over 6000