Search results

1 – 10 of over 1000
Article
Publication date: 1 December 1998

Mitchell M. Tseng, Jianxin Jiao and Chuan‐Jun Su

Customized product development is facing the challenges of maintaining mass producibility and exploring customer perception on target products. This paper reports an approach by…

1996

Abstract

Customized product development is facing the challenges of maintaining mass producibility and exploring customer perception on target products. This paper reports an approach by combining virtual prototyping (VP) with design by manufacturing simulation techniques. By constructing virtual prototypes, accurate assessments of mass producibility and customer acceptance will enable better informed design of customized products. The primary goal of VP for customized product development is to provide a multidisciplinary design definition and rapid prototyping environment for concept development and a tailored, scenario‐based simulation environment for concept evaluation within a single facility. This design environment facilitates the capture and utilization of information generated during the design phase, and the simultaneous generation, at design time, of manufacturing, materials, costing, and scheduling data, together with visual evaluation of customer perception on target products, hence supporting the implementation of concurrent engineering.

Details

Integrated Manufacturing Systems, vol. 9 no. 6
Type: Research Article
ISSN: 0957-6061

Keywords

Article
Publication date: 27 August 2019

Wei Jiang, Yu Yan, Qiao Min Li, An Zhang, Hong Jun Li and Daogeng Jiang

The power cable maintenance robot is an important equipment to ensure the reliable operation of high-voltage transmission (HVT) lines and is a useful exploration to achieve…

Abstract

Purpose

The power cable maintenance robot is an important equipment to ensure the reliable operation of high-voltage transmission (HVT) lines and is a useful exploration to achieve high-quality power transmission. In respond to a series of technical problems in the operation process, such as robot shaking, terminal positioning error, camera image blurred and visual servo control difficulty which caused by the influence of high altitude random wind load on the motion control of power maintenance robot. The purpose of this study is to minimizing the impact of wind loads on robot motion control on the high voltage transmission line, so as to obtain the sound motion performance.

Design/methodology/approach

This paper presents a robust stabilization control method for flexible wire power maintenance robot under wind load action, the coupling mathematical model between the flexible wire with the robot has been established, and the robot rolling model under wind load has also been established. According to the tilt sensor, the robot pendulum angle value can be obtained and fitted through sinusoidal function; the robot swing period and frequency under wind load action can be also obtained; the feedforward- and feedback-based robot closed-loop control system is also designed.

Findings

Through the online detection of wind load dection, so as to dynamic control the clamping force of the robot's dual-arm jaws, therefore, the robot robust stabilization control with different grades of wind load can be realized. Finally, the effectiveness and engineering practicability of the proposed algorithm are verified by simulation experiments and field operation experiments. Compared with the conventional proportional integral differential (PID) algorithm, this method can effectively suppress the influence of wind load on the robot robust stabilization motion control, and the robot posture detection operation control has been further optimized.

Originality/value

A robust stabilization control method for power robot under wind load is proposed. The coupling motion model of flexible HVT and robot is established. The mathematical relationship between the robot wind rolling angle and the wind force has been deduced, and the corresponding closed-loop control system with feedforward and feedback has also been designed. Through the design of robust stabilization control algorithm based on mixed sensitivity function, the effectiveness of the mixed sensitivity robust stabilization control algorithm is verified by simulation experiments in MATLAB environment. Compared with the traditional PID algorithm, this method can effectively suppress the influence of large-scale disturbance information represented by wind load on the robot motion control. The engineering practicability of the robot robust stabilization control algorithm is further verified by the robot live damper replacement operation under the field wind load, which further improves the robot operation efficiency and intelligence.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 July 2019

Wei Jiang, Meng Huai Peng, Yu Yan, Gongping Wu, An Zhang, Lianqing Yu and Hong Jun Li

In the extreme power environment of flexible transmission line, wind load, high voltage and strong electromagnetic interference, the motion performance of the robot manipulator is…

Abstract

Purpose

In the extreme power environment of flexible transmission line, wind load, high voltage and strong electromagnetic interference, the motion performance of the robot manipulator is strongly affected by the extreme environment. Therefore, this study aims to improve the manipulator motion control performance of power cable maintenance robot and effectively reduce the influence of specific operation environment on the robot manipulator motion posture.

Design/methodology/approach

The mathematical model under three typical operation conditions, namely, flexible line, wind load and strong electromagnetic field have been established, correspondingly the mapping relationship between different environment parameters and robot operation conditions are also given. Based on the nonlinear approximation feature of neural network, a back propagation (BP) neural network is adopted to solve the posture control problems. The power cable line sag, robot tile angle caused by wind load and spatial field strength are the input signals of the BP network in the robot motion posture control method.

Findings

Through the training and learning of the BP network, the output control variables are used to compensate the actual robot operation posture. The simulation experiment verifies the effectiveness of the proposed algorithm, and compared with the conventional proportional integral differential (PID) control, the method has high real-time performance and sound stability. Finally, field operation experiments further validate the engineering feasibility of the control method, and at the same time, the proposed control method has the remarkable characteristics of sound universality, adaptability and easy expansion.

Originality/value

A multi-layer control architecture which is suitable for smart grid platform maintenance is proposed and a robot system platform for network operation and maintenance management is constructed. The human–machine–environment coordination and integration mode and intelligent power system management platform can be realized which greatly improves the intelligence of power system management. Mathematical models of the robot under three typical operation conditions of flexible wire wind load and strong electromagnetic field are established and the mapping relationship between different environmental parameters and the robot operation conditions is given. Through the non-linear approximation characteristics of BP network, the control variables of the robot joints can be obtained and the influence of extreme environment on the robot posture can be compensated. The simulation results of MATLAB show that the control algorithm can effectively restrain the influence of uncertain factors such as flexible environment, wind load and strong electromagnetic field on the robot posture. It satisfied the design requirements of fast response, high tracking accuracy and good stability of the control system. Field operation tests further verify the engineering practicability of the algorithm.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 27 August 2021

Fei Chen, Chao Wang, Ke Yan, Muhammad Azeem Ghouri, Yongsheng Zhu  and Jun Hong

This paper aims to analyze the temperature field and the heat transfer performance of the counter rotating dual rotor bearings (CRDRB) based on the air phase flow field at…

Abstract

Purpose

This paper aims to analyze the temperature field and the heat transfer performance of the counter rotating dual rotor bearings (CRDRB) based on the air phase flow field at different speeds to provide effective support for the lubrication and the thermal design of CRDRB.

Design/methodology/approach

In this study, taking H7006C angular contact ball bearing as an example, based on the flow visualization technique and the thermal analysis methods, the effects of outer ring speed on the air phase flow field, the temperature field and the heat transfer in bearing cavity were investigated.

Findings

Results indicated that there were more complex turbulent air vortices in CRDRB cavity. Turbulent cyclones in critical contact zone reduced the heat dissipation capacity of air. Compared with single rotor bearing with a static outer ring, the average heat transfer coefficient reduced by 11.78% and the average temperature raised by 3.06 K inside CRDRB cavity. Under the influence of outer ring rotation, the high temperature area in ball-inner raceway contact zone and pocket raised and reduced by 160.13% and 30.48%, respectively. The outer ring rotation had opposite effect on the heat dissipation of raceway contact zone and pocket.

Originality/value

The air phase flow field characteristics and the heat transfer performance of CRDRB were revealed and analyzed from the mechanism. An area quantification method was presented as an auxiliary mean of the thermal analysis to evaluate the heat transfer performance of bearing.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 5 April 2022

Zhimin Pan, Yu Yan, Yizhou Huang, Wei Jiang, Gao Cheng Ye and Hong Jun Li

The purpose of this paper is to achieve optimal climbing control of the gas-insulated switchgear (GIS) robot, as the authors know that the GIS inspection robot is a kind of…

Abstract

Purpose

The purpose of this paper is to achieve optimal climbing control of the gas-insulated switchgear (GIS) robot, as the authors know that the GIS inspection robot is a kind of artificial intelligent mobile equipment which auxiliary or even substitute human labor drive on the inner wall of the gas-insulated metal enclosed switchgear. The GIS equipment fault inspection and maintenance can be realized through the robot manipulator on the mobile platform and the camera carried on the fuselage, and it is a kind of intelligent equipment for operation. To realize the inspection and operation of the GIS equipment pipeline without blind spots, the robot is required to be able to travel on any wall inside the pipeline, especially the top of the pipeline and both right and left sides of the pipeline, which requires the flexible climbing of the GIS inspection robot. The robot device has a certain adsorption function to ensure that the robot is fully attached to the wall surface. At the same time, the robot manipulator can be used for collision-free obstacle avoidance operation planning in the narrow operation space inside the GIS equipment.

Design/methodology/approach

The above two technologies are the key that the robot completes the GIS equipment inspections. Based on this, this paper focuses on modeling and analysis of the chassis adsorption characteristics for the GIS inspection robot. At the same time, the Denavit Hartenberg (D-H) coordinate model of the robot arm system has been established, and the kinematics forward and inverse solutions of the robot manipulator system have been derived.

Findings

The reachable working space point cloud diagram of the robot manipulator in MATLAB has been obtained based on the kinematics analysis, and the operation trajectory planning of the robot manipulator using the robot toolbox has been obtained. The simulation results show that the robot manipulator system can realize the movement without collision and obstacle avoidance. The space can cover the entire GIS pipeline so as to achieve no blind area operation.

Originality/value

Finally, the GIS inspection robot physical prototype system has been developed through system integration design, and the inspection, maintenance operation experiment has been carried out in the actual GIS equipment. The entire robot system can complete the GIS equipment inspection operation soundly and improve the operation efficiency. The research in this paper has important theoretical significance and practical application value for the optimization design and practical research of the GIS inspection robot system.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 2 November 2018

Wei Jiang, Yu Yan, Lianqing Yu, Hong Jun Li, Lizhen Du and Wei Chen

In the high-altitude, high-voltage electromagnetic interference operation environment, due to the parameters perturbation for robot control model caused by uncertainties and…

Abstract

Purpose

In the high-altitude, high-voltage electromagnetic interference operation environment, due to the parameters perturbation for robot control model caused by uncertainties and disturbances, and with the poor effective of the conventional proportional–integral–derivative (PID) control to parameters perturbation system, the mathematical model of power cable live operation robot joint PID closed-loop control system is established.

Design/methodology/approach

The corresponding joint motion robust PID control method is also proposed based on Kharitonov theory, the system robust stability conditions including the sufficient and necessary conditions are deduced and obtained and the solving process of robust PID control parameters stability region is provided.

Findings

Finally, the simulation research on robot joint motion PID control system is also launched in MATLAB environment based on Kharitonov theory. The results show that the conventional PID control obtains better control effect only to nominal model but is ineffective to parameter perturbation system, while robust PID obtains sound control effect to parameter perturbation system. Compared with H8 robust PID, the Kharitonov robust PID has better control effect which meet the system design requirements of joint motor quickly response, high tracking accuracy and sound stability. Finally, the validity and engineering practicability are verified by 220-kV living replacing damper operation experiment.

Originality/value

This paper has described the development of a damper replacement power cable live maintenance robot experimental prototype, which greatly improves operation efficiency and deals with the safety problem of operation in a high-voltage environment. A general manipulator motion control model of the power cable robot is established; the Kharitonov theory-based parameter perturbation robust motion control method of damper replacement robot is also obtained. Through the simulation comparison, it is verified that the Kharitonov control has more superiority for dealing with the parameter perturbation systems under the premise of ensuring the stability motion. The field experiment has further confirmed the engineering practicability.

Details

Industrial Robot: An International Journal, vol. 45 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 October 2019

Yu Yan, Wei Jiang, An Zhang, Qiao Min Li, Hong Jun Li, Wei Chen and YunFei Lei

This study aims to the three major problems of low cleaning efficiency, high labor intensity and difficult to evaluate the cleaning effect for manual insulators cleaning in ultra…

Abstract

Purpose

This study aims to the three major problems of low cleaning efficiency, high labor intensity and difficult to evaluate the cleaning effect for manual insulators cleaning in ultra high voltage (UHV) converter station, the purpose of this paper is to propose a basic configuration of UHV vertical insulator cleaning robot with multi-freedom-degree mechanical arm system on mobile airborne platform and its innovation cleaning operation motion planning.

Design/methodology/approach

The main factors affecting the insulators cleaning effect in the operation process have been analyzed. Because of the complex coupling relationship between the influencing factors and the insulators cleaning effect, it is difficult to establish its analytical mathematical model. Combining the non-linear mapping and approximation characteristics of back propagation (BP) neural network, the insulator cleaning effect evaluation can be abstracted as a non-linear approximation process from actual cleaning effect to ideal cleaning effect. An evaluation method of robot insulator cleaning effect based on BP neural network has been proposed.

Findings

Through the BP neural network training, the robot cleaning control parameters can be obtained and used in the robot online operation control, so that the better cleaning effect can be also obtained. Finally, a physical prototype of UHV vertical insulator cleaning robot has been developed, and the effectiveness and engineering practicability of the proposed robot configuration, cleaning effect evaluation method are all verified by simulation experiments and field operation experiments. At the same time, this method has the remarkable characteristics of sound versatility, strong adaptability, easy expansion and popularization.

Originality/value

An UHV vertical insulator cleaning robot operation system platform with multi-arm system on airborne platform has been proposed. Through the coordinated movement of the manipulator each joint, the manipulator can be positioned to the insulator strings, and the insulator can be cleaned by two pairs high-pressure nozzles located at the double manipulator. The influence factors of robot insulator cleaning effect have been analyzed. The BP neural network model of insulator cleaning effect evaluation has been established. The evaluation method of robot insulator cleaning effect based on BP neural network has also been proposed, and the corresponding evaluation result can be obtained through the network training. Through the system integration design, the robot physical prototype has been developed. For the evaluation of other operation effects of power system, the validity and engineering practicability of the robot mechanism, motion planning and the method for evaluating the effect of robot insulator cleaning have been verified by simulation and field operation experiments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 November 2020

Chengjun Chen, Zhongke Tian, Dongnian Li, Lieyong Pang, Tiannuo Wang and Jun Hong

This study aims to monitor and guide the assembly process. The operators need to change the assembly process according to the products’ specifications during manual assembly of…

933

Abstract

Purpose

This study aims to monitor and guide the assembly process. The operators need to change the assembly process according to the products’ specifications during manual assembly of mass customized production. Traditional information inquiry and display methods, such as manual lookup of assembly drawings or electronic manuals, are inefficient and error-prone.

Design/methodology/approach

This paper proposes a projection-based augmented reality system (PBARS) for assembly guidance and monitoring. The system includes a projection method based on viewpoint tracking, in which the position of the operator’s head is tracked and the projection images are changed correspondingly. The assembly monitoring phase applies a method for parts recognition. First, the pixel local binary pattern (PX-LBP) operator is achieved by merging the classical LBP operator with the pixel classification process. Afterward, the PX-LBP features of the depth images are extracted and the randomized decision forests classifier is used to get the pixel classification prediction image (PCPI). Parts recognition and assembly monitoring is performed by PCPI analysis.

Findings

The projection image changes with the viewpoint of the human body, hence the operators always perceive the three-dimensional guiding scene from different viewpoints, improving the human-computer interaction. Part recognition and assembly monitoring were achieved by comparing the PCPIs, in which missing and erroneous assembly can be detected online.

Originality/value

This paper designed the PBARS to monitor and guide the assembly process simultaneously, with potential applications in mass customized production. The parts recognition and assembly monitoring based on pixels classification provides a novel method for assembly monitoring.

Article
Publication date: 20 December 2019

Yanhui Sun, Junkang Guo, Jun Hong and Guanghui Liu

This paper aims to develop a theoretical method to analyze the rotation accuracy of rotating machinery with multi-support structures. The method effectively considers the…

Abstract

Purpose

This paper aims to develop a theoretical method to analyze the rotation accuracy of rotating machinery with multi-support structures. The method effectively considers the geometric errors and assembly deformation of parts.

Design/methodology/approach

A method composed of matrix and FEA methods is proposed to do the analysis. The deviation propagation analysis results and external loads are set as boundary conditions of the model which is built with Timoshenko beam elements to calculate the spatial pose of the rotor. The calculation is performed repeatedly as the rotation angle increased to get the rotation trajectories of concerned nodes, and further evaluation is done to get the rotation accuracy. Additionally, to get more reliable results, the bearing motion errors and stiffness are analyzed by a static model considering manufacturing errors of parts.

Findings

The feasibility of the proposed method is verified through a case study of a high-precision spindle. The method reasonably predicts the rotation accuracy of the spindle.

Originality/value

For rotating machinery with multi-support structures, the paper proposes a modeling method to predict the rotation accuracy, simultaneously considering geometric errors and assembly deformation of parts. This would improve the accuracy of tolerance analysis.

Details

Assembly Automation, vol. 40 no. 5
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 2 April 2019

Wei Jiang, An Zhang, Gongping Wu, Lianqing Yu, Hong Jun Li, Lizhen Du and Wei Chen

To improve the operational efficiency and intelligence of live operation robots in dynamic-unstructured operation environments, this paper aims to propose a fuzzy logic-based…

Abstract

Purpose

To improve the operational efficiency and intelligence of live operation robots in dynamic-unstructured operation environments, this paper aims to propose a fuzzy logic-based method for the autonomous search and visual localization control of a manipulator end effector applied to a drainage plate bolt on a high-voltage transmission line. The proposed approach is based on a four-way video image information output from a dual-operation manipulator.

Design/methodology/approach

First, based on the structural characteristics of the drainage line, an autonomous search method for the drainage plate bolt and a mapping relationship between the autonomous search control parameters and the relative posture of the operation manipulator-drainage line are proposed. The posture control parameters of the dual manipulators can then be obtained, and a two-dimensional fuzzy controller is designed with the posture offset distance and the posture offset angle as its input signals. This enables the localization control of the bolt and nut alignment to be realized through a visual process.

Findings

The proposed fuzzy control algorithm is used for bolt location control, and its performance is compared with that of the conventional approach. The simulation results indicate that the fuzzy control algorithm greatly improves the localization accuracy and operational efficiency of live operation robots.

Originality/value

Field operation experiments on actual transmission lines verify that the fuzzy control-based visual localization control of the robot manipulator has great engineering practicality. Therefore, the proposed method further improves operational intelligence compared with conventional algorithms.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 1000