Search results

1 – 10 of 14
Article
Publication date: 6 May 2024

Pablo Guillén, Hector Sarnago, Oscar Lucia and José M. Burdio

The purpose of this paper is to develop a load detection method for domestic induction cooktops. The solution aims to minimize its impact in the converter power transmission while…

15

Abstract

Purpose

The purpose of this paper is to develop a load detection method for domestic induction cooktops. The solution aims to minimize its impact in the converter power transmission while enabling the estimation of the equivalent electrical parameters of the load. This method is suitable for a multi-output resonant inverter topology with shared power devices.

Design/methodology/approach

The considered multi-output converter presents power devices that are shared between several loads. Thus, applying load detection methods in the literature requires a halt in the power transfer to ensuring safe operation. The proposed method uses a complementary short-voltage pulse to excite the induction heating (IH) coil without stopping the power transfer to the remaining IH loads. With the current through the coil and the analytical equations, the equivalent inductance and resistance of the load is estimated. The precision of the method has been evaluated by simulation, and experimental results are provided.

Findings

The measurement of the current through the induction coil as a response to a short-time single-pulse voltage variation provides enough information to estimate the load equivalent parameters, allowing to differentiate between no-load, non-suitable IH load and suitable IH load situations.

Originality/value

The proposed method provides a solution for load detection without requiring additional circuitry. It aims for low power transmission to the load and ensures zero-voltage switching and reduced peak current even in no-load cases. Moreover, the proposed solution is extensible to less complex converters, as the half bridge.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 March 2024

Ignacio Jesús Álvarez Gariburo, Hector Sarnago and Oscar Lucia

Induction heating processes need to adapt to complex geometries or variable processes that require a high degree of flexibility in the induction heating setup. This is usually…

Abstract

Purpose

Induction heating processes need to adapt to complex geometries or variable processes that require a high degree of flexibility in the induction heating setup. This is usually done using complex inductors or adaptable resonant tanks, which leads to costly and constrained implementations. This paper aims to propose a multi-level, versatile power supply able to adapt the output to the required induction heating process.

Design/methodology/approach

This paper proposes a versatile multilevel topology able to generate versatile output waveforms. The methodology followed includes simulation of the proposed architecture, design of the power electronics, control and magnetic elements and laboratory tests after building a 10-level prototype.

Findings

The proposed converter has been designed and tested using an experimental prototype. The designed generator is able to operate at 1 kVpp and 100 A at 250 kHz, proving the feasibility of the proposed approach.

Originality/value

The proposed converter enables versatile waveform generation, enabling advanced tests and processes on induction heating system. The proposed system allows for multifrequency generation using a single inductor and converter, or advanced tests for inductive and capacitive components used on induction heating systems. Unlike previous multifrequency proposals, the proposed generator enables a significantly improved versatility in terms of operational frequency and amplitude in a single converter.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 February 2023

Kanungo Barada Mohanty and Pavankumar Daramukkala

The purpose of this study is to provide the enhancement of power quality of a high power-rated voltage source inverter driven induction motor with a three-phase, three-level…

Abstract

Purpose

The purpose of this study is to provide the enhancement of power quality of a high power-rated voltage source inverter driven induction motor with a three-phase, three-level neutral point clamped converter placed at the front end, while a passive power filter is connected in shunt with it. The improvement in power quality can be achieved by reducing the total harmonic distortion in source current. The controllers were designed for the linearization of the high-power induction motor drive. A control method is presented for the regulation of the common DC-link voltage.

Design/methodology/approach

The induction motor is modeled using its dynamic equations, and a decoupling controller is designed to linearize the nonlinear dynamics of the drive through feedback. The common DC-link voltage of the proposed front-end connected converter is monitored and controlled through a control method which feeds the pulse width modulated inverter that drives the induction motor. A passive power filter is designed to meet the reactive power requirement of the system in addition to improve the power quality.

Findings

Simulations were carried out for the proposed topology of the drive mechanism, and the outcomes were analyzed by a comparative analysis of the drive system both in the presence of the passive filter as well as in the absence of the filter. The total harmonic distortion is found to be reduced enough to meet the standards with the designed filter, and the reactive power is also compensated considerably. The input power factor at the supply side is maintained almost to unity, and the DC-link voltage of the proposed circuit topology is maintained at the desired level. The overall performance of the drive system was found to be useful and economical.

Originality/value

A new topology of a front-end connected three-level neutral point clamped converter to a high power-rated induction motor drive is proposed. The drive is fed by a pulse width modulated inverter with a common DC-link with the front end connected converter. A passive filter is designed with respect to the reactive power requirement of the system and connected in shunt to the converter at the supply side. Control schemes are designed and used for the drive system and also for the regulation of the common DC-link voltage of the proposed front end connected converter.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 31 March 2023

Tapas Kumar Mohapatra and Asim Kumar Dey

This study aims to propose a unique algorithm-based hysteresis current control technique (HCCT) for induction motor using a single-phase voltage source inverter (SPVSI) to…

Abstract

Purpose

This study aims to propose a unique algorithm-based hysteresis current control technique (HCCT) for induction motor using a single-phase voltage source inverter (SPVSI) to eliminate both sub and inter harmonics (SIH) and electromagnetic interference (EMI). The total harmonic distortion (THD) of the load current also reduces in comparison to standard HCCT and modified technique-based existing HCCT.

Design/methodology/approach

Matlab simulation has been carried out to develop an SPVSI model and the unique algorithm-based HCCT. The same platform has also been used to develop a few existing HCCTs such as standard, dual-band and modified. The switching frequency and harmonic analysis of load currents for all the HCCTs have been compared in the paper. The hardware implementation of the proposed algorithm-based HCCT was also verified and compared with the simulation results.

Findings

The proposed unique algorithm-based HCCT provides the benefits of both unipolar and bipolar switching techniques. It reduces the switching frequency as unipolar switching scheme and eliminates the EMI. It also reduces THD and nullifies SIH of the load current. This enables an improvement in the overall performance and efficiency of the motor.

Practical implications

This proposed HCCT eliminates the SIH and improves the overall efficiency of the motor, hence can prevent overheating, vibration, acoustic noise, pulsating torque and braking of the rotor shaft of the motor and increasing the reliability of the system.

Social implications

It can be implemented for the motors that are used in household applications and electric vehicles through one-phase inverter.

Originality/value

This proposed HCCT has detected the zero crossing point of reference current, allowed samples and shifted the necessary amount of hysteresis band at zero crossing region to eliminate SIH and THD.

Details

World Journal of Engineering, vol. 21 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 15 May 2024

Dangshu Wang, Zhimin Guan, Jing Wang, Menghu Chang, Licong Zhao and Xinxia Wang

This study aims to solve the problem of high output voltage fluctuation and low efficiency caused by the misalignment of the magnetic coupling structure in the wireless charging…

Abstract

Purpose

This study aims to solve the problem of high output voltage fluctuation and low efficiency caused by the misalignment of the magnetic coupling structure in the wireless charging system for electric vehicles. To address these issues, this paper proposes a dual LCC-S wireless power transfer (WPT) system based on the double-D double-layer quadrature (DDDQ) coil, which can realize the anti-misalignment constant voltage output of the system.

Design/methodology/approach

First, this paper establishes the equivalent circuit of a WPT system based on dual LCC-S compensation topology and analyzes its constant-voltage output characteristics and the relationship between system transmission efficiency and coupling coefficient. 1. Quadruple D (Ahmad et al., 2019) and double-D quadrature pad (DDQP) (Chen et al., 2019) coils have good anti-misalignment in the transverse and longitudinal directions, but the magnetic induction intensity in the center of the coils is weak, making it difficult for the receiving coil to effectively couple to the magnetic field energy. 2. Based on the double-D quadrature (DDQ) structure coil that can eliminate the mutual inductance between coupling coils and cross-coupling, Gong et al. (2022a) proposed a parameter optimized LCC-LC series-parallel hybrid topology circuit, which ensures that the output current fluctuation is controlled within 5% only when the system is misaligned within the 50% range along the X direction, achieving constant current output with anti-misalignment. The magnetic coupling structure’s finite element simulation model is established to analyze the change in magnetic induction intensity and the system’s anti-misalignment characteristics when the coil offsets along the x and y axes. Finally, an experimental prototype is developed to verify the constant voltage output performance and anti-misalignment performance of the system, and the proposed anti-misalignment system is compared with the systems in existing literature, highlighting the advantages of this design.

Findings

The experimental results show that the system can achieve a constant voltage output of 48V under a time-varying load, and the output voltage fluctuates within ±5% of the set value within the range of ±60 mm lateral misalignment and ±72 mm longitudinal misalignment.

Originality/value

Based on the dual LCC-S WPT system, the mutual inductance between the same side coils is reduced by adding decoupling coils, and the anti-misalignment characteristics and output power of the system are improved in a certain range. It is aimed at improving the stability of the system output and transmission efficiency.

Details

Circuit World, vol. 50 no. 2/3
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 August 2024

Ming Zhang, Hantao Zhang, WeiYe Tao, Yan Yang and Yingjun Sang

This study aims to solve the problem that both the speed and the required driving power of electric vehicles (EVs) will change during the dynamic wireless charging (DWC) process…

Abstract

Purpose

This study aims to solve the problem that both the speed and the required driving power of electric vehicles (EVs) will change during the dynamic wireless charging (DWC) process, making it difficult to charge EVs with a constant power considering the overall efficiency of DWC system, the numbers of EVs and the power supply capacity. Therefore, this paper proposes the power control and efficiency optimization strategies for multiple EVs.

Design/methodology/approach

The wireless power charging system for multiple loads with a structure of double-sided LCC compensation topology is established. The expressions of optimal transmission efficiency and optimal equivalent impedance are derived. Taking the Tesla Model 3 as an example, a method to determine the number of EVs allowed by one transmitter coil and the overall charging power is proposed considering EV speed, power supply capacity, safe braking distance and overall efficiency. Then, the power control strategy, which can adapt to the changes of EV speed and the efficiency optimization strategy under different numbers of EVs are proposed.

Findings

In this paper, a method to determine the numbers of EVs allowed by one transmitter coil and the overall charging power is proposed considering EVs speed, power supply capacity, safe braking distance and overall efficiency. The accuracy of the charging power is good enough and the overall efficiency reaches a maximum of 91.79% when the load resistance changes from 5Ω to 20Ω.

Originality/value

In this paper, the power control and efficiency optimization strategy of DWC system for multiple EVs are proposed. Specifically, a method of designing the number of EVs and charging power allowed by one transmitter coil considering the factors of EV speed, power supply capacity, safe braking distance and overall efficiency is designed. The overall efficiency of the experiment reaches a maximum of 91.79% after adopting the optimization strategy.

Details

Circuit World, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 30 April 2024

Ignacio Jesús Álvarez Gariburo, Hector Sarnago and Oscar Lucia

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased…

Abstract

Purpose

Plasma technology has become of great interest in a wide variety of industrial and domestic applications. Moreover, the application of plasma in the domestic field has increased in recent years due to its applications to surface treatment and disinfection. In this context, there is a significant need for versatile power generators able to generate a wide range of output voltage/current ranging from direct current (DC) to tens of kHz in the range of kVs. The purpose of this paper is to develop a highly versatile power converter for plasma generation based on a multilevel topology.

Design/methodology/approach

This paper proposes a versatile multilevel topology able to generate versatile output waveforms. The followed methodology includes simulation of the proposed architecture, design of the power electronics, control and magnetic elements and test laboratory tests after building an eight-level prototype.

Findings

The proposed converter has been designed and tested using an experimental prototype. The designed generator is able to operate at 10 kVpp output voltage and 10 kHz, proving the feasibility of the proposed approach.

Originality/value

The proposed converter enables versatile waveform generation, enabling advanced studies in plasma generation. Unlike previous proposals, the proposed converter features bidirectional operation, allowing to test complex reactive loads. Besides, complex waveforms can be generated, allowing testing complex patterns for optimized cold-plasma generation methods. Besides, unlike transformer- or resonant-network-based approaches, the proposed generator features very low output impedance regardless the operating point, exhibiting improved and reliable performance for different operating conditions.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 June 2024

Ahmed Masmoudi

The purpose of this paper is to introduce an aid for teaching transverse flux permanent magnet machines (TFPMs) with emphasis on their torque production.

Abstract

Purpose

The purpose of this paper is to introduce an aid for teaching transverse flux permanent magnet machines (TFPMs) with emphasis on their torque production.

Design/methodology/approach

The Lorentz force law is applied to fictitious current loops emulating the permanent magnets (PMs) mounted on the rotor according to different arrangements; the air gap flux density is created by the armature current.

Findings

Implemented in a master lecture on special AC machines, the proposed approach has revealed a renewed interest in electromagnetic fundamentals for pedagogical purposes. It makes simple the explanation of the principle of operation of a class of AC machines reputed by the complexity of their magnetic circuits. The latter incorporates axially stacked decoupled sub-circuits, one per phase generating alternating magnetic fields. More specifically, there is common air gap, shared by the machine phases, in which a rotating magnetic field is created by the superposition of the PM contribution and the armature one.

Research limitations/implications

Accounting for the complexity of the magnetic circuits and the three-dimensional (3D) flux paths characterizing TFPMs, a 3D finite element analysis (FEA) is required for the validation of the analytical predictions. Nevertheless, such a 3D FEA validation is far from being obvious to be carried on within a master lecture.

Originality/value

While the basis of Lorentz forces resulting from fictitious current loops emulating PMs has been considered in some referenced papers, its simple and pedagogical application to assess the torque production of several TFPM concepts represents the added value of the present paper.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 July 2024

Mehrdad Agha Mohammad Ali Kermani, Mohammadreza Moghadam, Hadi Sahebi and Sheyda Rezazadeh Moghadam

The primary aim of this study is to provide actionable guidance for augmenting profitability in photovoltaic power plant investments within Iran’s solar energy sector. By…

Abstract

Purpose

The primary aim of this study is to provide actionable guidance for augmenting profitability in photovoltaic power plant investments within Iran’s solar energy sector. By emphasizing prudent capital management and strategic investment decisions, our research seeks to assist emerging businesses in attaining sustained success in this domain.

Design/methodology/approach

This study presents a comprehensive approach to refined decision-making in Iran’s solar energy sector. Our methodology integrates the best-worst method, ArcGIS software for site selection, and the TOPSIS method for decision-making, aiming to enhance precision and reliability.

Findings

Our research has identified ten promising regions suitable for photovoltaic power plant installations in Iran. Leveraging the TOPSIS method, we have made optimal selections among these alternatives. Furthermore, our exhaustive cost analysis, incorporating factors like land prices, system maintenance, revenue estimation, and various financial scenarios, has yielded insights into project cost-effectiveness.

Originality/value

By filling a notable gap in the literature regarding optimal site selection and investment strategies for photovoltaic power plants in Iran, our research contributes to the sustainable development of solar energy infrastructure. Through a thorough literature review and the development of a novel methodology, we offer valuable guidance for businesses and investors seeking success in Iran’s solar energy sector. Our study represents a significant advancement by introducing a novel methodology that integrates the best-worst method, ArcGIS software, and the TOPSIS method for site selection and investment analysis. These findings furnish valuable guidance for businesses seeking success in the solar energy sector, thereby contributing to the sustainable development of renewable energy infrastructure in Iran and beyond.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Open Access
Article
Publication date: 23 February 2024

Yuliang Du

Auxiliary power system is an indispensable part of the train; the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways, which are…

227

Abstract

Purpose

Auxiliary power system is an indispensable part of the train; the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways, which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters. Powered by DC-link voltage of traction converters, the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking. Meanwhile, powered by traction transformers, the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.

Design/methodology/approach

Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied. Failure reasons why previous solutions cannot be realized are analyzed. An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper. The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive. This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.

Findings

This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid. Control objectives of uninterrupted power supply technology are proposed, which are no overvoltage, no overcurrent and uninterrupted power supply.

Originality/value

The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section. Furthermore, this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.

Details

Railway Sciences, vol. 3 no. 2
Type: Research Article
ISSN: 2755-0907

Keywords

1 – 10 of 14