Search results

1 – 10 of over 1000
Article
Publication date: 4 September 2017

Basma Souayeh, Nader Ben-Cheikh and Brahim Ben-Beya

The purpose of this paper is to examine numerically the three natural convection of air induced by temperature difference between a cold outer cubic enclosure and a hot inner…

Abstract

Purpose

The purpose of this paper is to examine numerically the three natural convection of air induced by temperature difference between a cold outer cubic enclosure and a hot inner cylinder. Simulations have been carried out for Rayleigh numbers ranging from 103 to 107 and titled angle of the enclosure from 0° to 90°. The developed mathematical model is governed by the coupled equations of continuity, momentum and energy, and is solved by finite volume method. The effects of cylinder inclination and Rayleigh number on fluid flow and heat transfer are presented. The distribution of isocontours of temperature and isosurfaces of velocity eventually reaches a steady state in the range of Rayleigh numbers between 103 and 107 for titled inclination of 90°; however, for the remaining inclinations, Rayleigh number must be in the range 103-106 to avoid unsteady state, which is manifested by the division of the area containing the maximum local heat transfer rate into three parts for a Rayleigh number equal to 107 and an inclination of 90°. We mention that instability study is not included in the present paper, which is solely devoted to three-dimensional calculations. Results also indicate that optimal average heat transfer rate is obtained for both high Rayleigh number of 106 and high inclination of 90° for the two cases of the inner cylinder and cubical enclosure.

Design/methodology/approach

The manuscript deals with prediction of the three-dimensional natural convection phenomena in a cubical cavity induced by an isothermal cylinder at the center with different inclinations by simulating the flow using highly numerical methods such as finite volume method.

Findings

It is found that the local Nusselt number through active walls for titled inclination set at 90°, the symmetry of the flow is conserved and the area containing the maximum heat transfer is divided into three smaller areas situated near the upper portion of the wall, taking the maximum value. That may be due to the preparation of local occurrence of instabilities and bifurcation phenomena that appear for Ra > 107, which is not included in the present paper to save journal space. It was found also that an optimal heat transfer appears when the cylinder orientation becomes vertical (a = 90°). For this inclination, buoyancy forces act upward, corresponding to an aiding situation. In addition, heat transfer rate is increasing with Rayleigh numbers, so correlations of average Nusselt through the cubical cavity and the cylinder are established as function of two parameters (Ra, a). Comparisons of the numerical results with those obtained from all correlations show good agreements.

Originality/value

To the author’s knowledge, studies have thus far adressed three-dimensional cuboids enclosures induced by an inner shape which the location is changed. However, no study has examined three-dimensional natural convection between the inner isothermal cylinder and outer cooled cubical enclosure when the outer enclosure is tilted.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 May 2012

S.M. Aminossadati and B. Ghasemi

The purpose of this paper is to numerically examine the conjugate natural convection in an inclined enclosure with a conducting centred block. This enclosure is filled with an…

Abstract

Purpose

The purpose of this paper is to numerically examine the conjugate natural convection in an inclined enclosure with a conducting centred block. This enclosure is filled with an Ethylene Glycol‐copper nanofluid. This study utilises numerical simulations to quantify the effects of pertinent parameters such as the Rayleigh number, the solid volume fraction, the length and the thermal conductivity of the centred block and the inclination angle of the enclosure on the conjugate natural convection characteristics.

Design/methodology/approach

The SIMPLE algorithm is utilised to solve the governing equations with the corresponding boundary conditions. The convection‐diffusion terms are discretised by a power‐law scheme and the system is numerically modelled in FORTRAN.

Findings

The results show that the utilisation of the nanofluid enhances the thermal performance of the enclosure and that the length of the centred block affects the heat transfer rate. The results also show that the higher block thermal conductivity results in a better heat transfer that is most noticeable at low Rayleigh numbers, and that increasing the inclination angle improves the heat transfer, especially at high Rayleigh numbers.

Originality/value

This paper presents an original research on conjugate natural convection in nanofluid‐filled enclosures.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 September 2020

Oktay Çiçek, A. Filiz Baytaş and A. Cihat Baytaş

The purpose of this study is to numerically analyze the mixed convection and entropy generation in an annulus with a rotating heated inner cylinder for single-wall carbon nanotube…

Abstract

Purpose

The purpose of this study is to numerically analyze the mixed convection and entropy generation in an annulus with a rotating heated inner cylinder for single-wall carbon nanotube (SWCNT)–water nanofluid flow using local thermal nonequilibrium (LTNE) model. An examination of the system behavior is presented considering the heat-generating solid phase inside the porous layer partly filled at the inner surface of the outer cylinder.

Design/methodology/approach

The discretized governing equations for nanofluid and porous layer by means of the finite volume method are solved by using the SIMPLE algorithm.

Findings

It is found that the buoyancy force and rotational effect have an important impact on the change of the strength of streamlines and isotherms for nanofluid flow. The minimum average Nusselt number on the inner cylinder is obtained at Ra$_E$ = 10$^4$, and the minimum total entropy generation is found at Re = 400 for given parameters. The entropy generation minimization is determined in case of different nanoparticle volume fractions. It is observed that at the same external Rayleigh numbers, the LTNE condition obtained with internal heat generation is very different from that without heat generation.

Originality/value

To the best of the authors’ knowledge, there is no previous paper presenting mixed convection and entropy generation of SWCNT–water nanofluid in a porous annulus under LTNE condition. The addition of nanoparticles to based fluid leads to a decrease in the value of minimum total entropy generation. Thus, using nanofluid has a significant role in the thermal design and optimization of heat transfer applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 November 2018

Amin Shahsavar, Pouyan Talebizadeh Sardari and D. Toghraie

This paper aims to numerically investigate the heat transfer and entropy generation characteristics of water-based hybrid nanofluid in natural convection flow inside a concentric…

Abstract

Purpose

This paper aims to numerically investigate the heat transfer and entropy generation characteristics of water-based hybrid nanofluid in natural convection flow inside a concentric horizontal annulus.

Design/methodology/approach

The hybrid nanofluid is prepared by suspending tetramethylammonium hydroxide-coated Fe3O4 (magnetite) nanoparticles and gum arabic (GA)-coated carbon nanotubes (CNTs) in water. The effects of nanoparticle volume concentration and Rayleigh number on the streamlines, isotherms, average Nusselt number and the thermal, frictional and total entropy generation rates are investigated comprehensively.

Findings

Results show the advantageous effect of hybrid nanofluid on the average Nusselt number. Furthermore, the study of entropy generation shows the increment of both frictional and thermal entropy generation rates by increasing Fe3O4 and CNT concentrations at various Rayleigh numbers. Increasing Rayleigh number from 103 to 105, at Fe3O4 concentration of 0.9 per cent and CNT concentration of 1.35 per cent, increases the average Nusselt number, thermal entropy generation rate and frictional entropy generation rate by 224.95, 224.65 and 155.25 per cent, respectively. Moreover, increasing the Fe3O4 concentration from 0.5 to 0.9 per cent, at Rayleigh number of 105 and CNT concentration of 1.35 per cent, intensifies the average Nusselt number, thermal entropy generation rate and frictional entropy generation rate by 18.36, 22.78 and 72.7 per cent, respectively.

Originality/value

To the best knowledge of the authors, there are not any archival publications considering the detailed behaviour of the natural convective heat transfer and entropy generation of hybrid nanofluid in a concentric annulus.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 January 2020

Mokhtar Ferhi and Ridha Djebali

This paper aims to perform the lattice Boltzmann simulation of conjugate natural convection heat transfer, heat flow visualization via heatlines approach and entropy generation in…

Abstract

Purpose

This paper aims to perform the lattice Boltzmann simulation of conjugate natural convection heat transfer, heat flow visualization via heatlines approach and entropy generation in a partitioned medium filled with Ag-MgO (15-85%)/water.

Design/methodology/approach

The lattice Boltzmann method (LBM) is used to predict the dynamic and thermal behaviors. Experimental correlations for dynamic viscosity and thermal conductivity versus solid volume fraction are used. The study is conducted for the ranges of Rayleigh number 103 ≤ Ra ≤ 106, the partitioner thickness 0.01 ≤ δ ≤ 0.9, its position 0.15 ≤ Xs ≤ 0.85 and the hybrid nano-suspensions volume fraction 0% ≤ ϕ ≤ 2%.

Findings

The effects of varying of controlling parameters on the convective flow patterns, temperature contours, heat transfers, the heatlines and the entropy generation are presented. It has been found that the maximum rate of heat transfer enhancement occurs for low Ra numbers (103) and is close to 13.52%. The solid thickness d and its horizontal position Xs have a substantial influence on the heat transfer rate, flow structure, heatline, total entropy generation and Bejan number. Besides, the maximum heat transfer is detected for high Ra and δ ≈ 1 and the percentage of augmentation is equal to 65.55% for ϕ = 2%. According to the horizontal position, the heat transfer remains invariant for Ra = 103 and takes a maximum value near the active walls for Ra ≥ 104. The total entropy generation increases with Ra and decreases with ϕ for Ra = 106. The increase of ϕ from 0 to 2% leads to a reduction in close to 40.76%. For this value of Ra, the entropy is the maximum for δ = 0.4 and Xs = 0.35 and Xs = 0.65%. Moreover, as the Ra increases the Bejan number undergoes a decrease. The Bejan number is the maximum for Ra = 103 independently to δ and Xs. The superior thermal performance manifests at low Ra and high value of δ independently to the positions of the conducting body.

Originality/value

The originality of this paper is to analyze the hybrid nano-additive effects on the two-dimensional conjugate natural convection in a partitioned medium using the LBM. The experimental correlations used for the effective thermal conductivity and dynamic viscosity give credibility to our study. Different approaches such as heatlines and entropy generation are used.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2003

Prodip Kumar Das, Shohel Mahmud, Syeda Humaira Tasnim and A.K.M. Sadrul Islam

A numerical simulation has been carried out to investigate the buoyancy induced flow and heat transfer characteristics inside a wavy walled enclosure. The enclosure consists of…

Abstract

A numerical simulation has been carried out to investigate the buoyancy induced flow and heat transfer characteristics inside a wavy walled enclosure. The enclosure consists of two parallel wavy and two straight walls. The top and the bottom walls are wavy and kept isothermal. Two straight‐vertical sidewalls are considered adiabatic. Governing equations are discretized using the control volume based finite‐volume method with collocated variable arrangement. Simulation was carried out for a range of surface waviness ratios, λ=0.00‐0.25; aspect ratios, A=0.25‐0.5; and Rayleigh numbers Ra=100‐107 for a fluid having Prandtl number equal to 1.0. Results are presented in the form of local and global Nusselt number distributions, streamlines, and isothermal lines for different values of surface waviness and aspect ratios. For a special case of λ=0 and A=1.0, the average Nusselt number distribution is compared with available reference. The results suggest that natural convection heat transfer is changed considerably when surface waviness changes and also depends on the aspect ratio of the domain. In addition to the heat transfer results, the heat transfer irreversibility in terms of Bejan number (Be) was measured. For a set of selected values of the parameters (λ, A, and Ra), a contour of the Bejan number is presented at the end of this paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 November 2016

M.M. Rahman, Hakan F. Öztop, R. Saidur, A.G. Naim, Khaled S. Al-Salem and Talaat A. Ibrahim

The purpose of this paper is to make a numerical analysis on unsteady analysis of natural convection heat and mass transfer to obtain flow field, temperature distribution, and…

Abstract

Purpose

The purpose of this paper is to make a numerical analysis on unsteady analysis of natural convection heat and mass transfer to obtain flow field, temperature distribution, and concentration distribution.

Design/methodology/approach

A finite element method is applied to solve governing equations of natural convection in curvilinear-shaped system for different parameters as thermal Rayleigh numbers (103=RaT=106), inclination angle (0°=φ=60°) and Hartmann numbers (0=Ha=100).

Findings

Both magnetic field and inclination angle can be used as control parameter on heat and mass transfer. Flow strength decreases almost 100 percent between Ha=0 and Ha=100 on behalf of the higher values of thermal Rayleigh number.

Originality/value

The originality of this work is to application of magnetic field on time-dependent natural convection flow, heat and mass transfer for curvilinear geometry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 November 2018

Yuan Ma, Rasul Mohebbi, Mohammad Mehdi Rashidi and Zhigang Yang

This paper aims to numerically investigate the natural convection heat transfer of multi-wall carbon nanotubes (MWCNTs)-water nanofluid in U-shaped enclosure equipped with a hot…

269

Abstract

Purpose

This paper aims to numerically investigate the natural convection heat transfer of multi-wall carbon nanotubes (MWCNTs)-water nanofluid in U-shaped enclosure equipped with a hot obstacle by using the lattice Boltzmann method.

Design/methodology/approach

The combination of the three topics (U-shaped enclosure, different positions of the hot obstacle and MWCNTs-water nanofluid) is innovative in the present study. In total, 15 different positions of the hot obstacle have been arranged, and the effects of pertinent parameters such as Rayleigh numbers, the solid volume fraction of the MWCNTs nanoparticles on the flow field, temperature distribution and the rate of heat transfer inside the enclosure are also investigated.

Findings

It is found that the average Nusselt number increased by raising the Rayleigh number, and so did the nanoparticle solid volume fraction regardless the position of the hot obstacle. Moreover, enclosures where the hot obstacle is located at the bottom region proved to provide a better rate of heat transfer at high Rayleigh number (106). It is concluded that at a low Ra number (103-105), the higher heat transfer rate and Nu number will be obtained when the hot obstacle is located in the left or right channel.

Originality/value

In the literature, no trace of studying the natural convection of nanofluids in U-shaped enclosures with heating obstacles was found. Also, MWCNTs were less used as nanoparticles. As the natural convection of nanofluids in thermal engineering applications would expand the existing knowledge, the current researchers conducted a numerical study of the natural convection of Maxwell nanofluid with MWCNTs in U-shaped enclosure equipped with a hot obstacle by using lattice Boltzmann method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 January 2024

Sumant Kumar, B.V. Rathish Kumar, S.V.S.S.N.V.G. Krishna Murthy and Deepika Parmar

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the…

Abstract

Purpose

Thermo-magnetic convective flow analysis under the impact of thermal radiation for heat and entropy generation phenomena is an active research field for understanding the efficiency of thermodynamic systems in various engineering sectors. This study aims to examine the characteristics of convective heat transport and entropy generation within an inverted T-shaped porous enclosure saturated with a hybrid nanofluid under the influence of thermal radiation and magnetic field.

Design/methodology/approach

The mathematical model incorporates the Darcy-Forchheimer-Brinkmann model and considers thermal radiation in the energy balance equation. The complete mathematical model has been numerically simulated through the penalty finite element approach at varying values of flow parameters, such as Rayleigh number (Ra), Hartmann number (Ha), Darcy number (Da), radiation parameter (Rd) and porosity value (e). Furthermore, the graphical results for energy variation have been monitored through the energy-flux vector, whereas the entropy generation along with its individual components, namely, entropy generation due to heat transfer, fluid friction and magnetic field, are also presented. Furthermore, the results of the Bejan number for each component are also discussed in detail. Additionally, the concept of ecological coefficient of performance (ECOP) has also been included to analyse the thermal efficiency of the model.

Findings

The graphical analysis of results indicates that higher values of Ra, Da, e and Rd enhance the convective heat transport and entropy generation phenomena more rapidly. However, increasing Ha values have a detrimental effect due to the increasing impact of magnetic forces. Furthermore, the ECOP result suggests that the rising value of Da, e and Rd at smaller Ra show a maximum thermal efficiency of the mathematical model, which further declines as the Ra increases. Conversely, the thermal efficiency of the model improves with increasing Ha value, showing an opposite trend in ECOP.

Practical implications

Such complex porous enclosures have practical applications in engineering and science, including areas like solar power collectors, heat exchangers and electronic equipment. Furthermore, the present study of entropy generation would play a vital role in optimizing system performance, improving energy efficiency and promoting sustainable engineering practices during the natural convection process.

Originality/value

To the best of the authors’ knowledge, this study is the first ever attempted detailed investigation of heat transfer and entropy generation phenomena flow parameter ranges in an inverted T-shaped porous enclosure under a uniform magnetic field and thermal radiation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2024

Farooq H. Ali, Mushtaq F. Almensoury, Atheer Saad Hashim, Qusay Rasheed Al-Amir, Hameed K. Hamzah and M. Hatami

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Abstract

Purpose

This paper aims to study the effect of concentric hot circular cylinder inside egg-cavity porous-copper nanofluid on natural convection phenomena.

Design/methodology/approach

The finite element method–based Galerkin approach is applied to solve numerically the set of governing equations with appropriate boundary conditions.

Findings

The effects of different range parameters, such as Darcy number (10–3 = Da = 10–1), Rayleigh number (103 = Ra = 106), nanoparticle volume fraction (0 = ϑ = 0.06) and eccentricity (−0.3 = e = 0.1) on the fluid flow represent by stream function and heat transfer represent by temperature distribution, local and average Nusselt numbers.

Research limitations/implications

A comparison between oval shape and concentric circular concentric cylinder was investigated.

Originality/value

In the current numerical study, heat transfer by natural convection was identified inside the new design of egg-shaped cavity as a result of the presence of a circular inside it supported by a porous medium filled with a nanofluid. After reviewing previous studies and considering the importance of heat transfer by free convection inside tubes for many applications, to the best of the authors’ knowledge, the current work is the first study that deals with a study and comparison between the common shape (concentric circular tubes) and the new shape (egg-shaped cavity).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 1000