Search results

1 – 10 of over 10000
Article
Publication date: 5 July 2024

Ying Wang, Chaojie Wang, Zhenhua Hu, Yonghui Chen and Bo Min

The soft stabilized slab and pile-supported (SSPS) embankment is an improvement technique to increase the efficiency of resources in road construction. To capture the effects of…

Abstract

Purpose

The soft stabilized slab and pile-supported (SSPS) embankment is an improvement technique to increase the efficiency of resources in road construction. To capture the effects of stabilized slabs on the stress transfer mechanism, the differential settlements and the lateral displacement of the embankment completely. A theoretical model of SSPS is proposed by considering the effect of soil arching and the interaction between the embankment fill, stabilized soil, pile, foundation soil and bearing stratum.

Design/methodology/approach

In the theoretical model, the stress and strain coordination relationship of the system was analyzed in view of the minimum potential energy theory and equal settlement plane theory. Subsequently, the theoretical method was applied to field tests for comparison. Finally, the influence of the elastic modulus and the thickness of the stabilized slab on the stress concentration ratio and foundation settlement were examined.

Findings

In addition to the experimental findings, the method has been revealed to be reasonable and feasible, considering its ability to effectively exploit the stabilized slab effect and improve the bearing capacity of soil and piles. An economical and reasonable arrangement scheme for the thickness and strength of stabilized slabs was obtained. The results reveal that the optimum elastic modulus was chosen as 28 MPa–60 MPa, and the optimum thickness of the stabilized slab was selected as 1.5 m–2.1 m using the parameters of field tests, which can provide guidance to engineering design.

Originality/value

An optimization calculation method is established to analyze the load transfer mechanics of the SSPS embankment based on a double-equal settlement plane. The model’s rationality was analyzed by comparing the settlement and stress concentration ratios in the field tests. Subsequently, the influence of the elastic modulus and the thickness of the stabilized slab on the stress concentration ratio and settlement were examined. An economical and reasonable arrangement scheme for the thickness and elastic modulus of stabilized slabs was obtained, which can provide a novel approach for engineering design.

Article
Publication date: 14 August 2024

Qingjie Zhang and Xinbang Cao

To investigate the potential of raising the retirement age and reforming pension insurance in mitigating intra- and inter-generational income inequality, thereby offering…

Abstract

Purpose

To investigate the potential of raising the retirement age and reforming pension insurance in mitigating intra- and inter-generational income inequality, thereby offering empirical support for governmental policy formulation.

Design/methodology/approach

A dynamic general equilibrium model with intertemporal iteration is developed to comprehensively assess the impact of policies raising the retirement age on income inequality, taking into account delayed retirement, survival probability, and pension insurance. The theoretical hypotheses are validated through simulation using MATLAB.

Findings

Through theoretical analysis, it is determined that, given certain assumptions are satisfied, raising the retirement age can effectively mitigate intra-generational income inequality, inter-generational income inequality under both the pay-as-you-go and fund accumulation systems. Simulation results indicate that, under current parameter settings, raising the retirement age can reduce the Gini coefficient. Furthermore, this study reveals that regardless of the pay-as-you-go or fund accumulation system, pension insurance serves as a mechanism for income redistribution and alleviating income inequality.

Originality/value

It offers a theoretical foundation for the government's policy on delayed retirement and endowment insurance.

Details

Kybernetes, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0368-492X

Keywords

Content available
Book part
Publication date: 9 September 2024

Muhammad Hassan Raza

Abstract

Details

The Multilevel Community Engagement Model
Type: Book
ISBN: 978-1-83797-698-0

Article
Publication date: 16 July 2024

Fehid Ishtiaq, R. Ellahi, M.M. Bhatti and Sadiq M. Sait

Cilia serves numerous biological functions in the human body. Malfunctioning of nonmotile or motile cilia will have different kinds of consequences for human health. More…

Abstract

Purpose

Cilia serves numerous biological functions in the human body. Malfunctioning of nonmotile or motile cilia will have different kinds of consequences for human health. More specifically, the directed and rhythmic beat of motile cilia facilitates the unidirectional flow of fluids that are crucial in both homeostasis and the development of ciliated tissues. In cilia-dependent hydrodynamic flows, tapering geometries look a lot like the structure of biological pathways and vessels, like airways and lymphatic vessels. In this paper, the Carreau fluid model through the cilia-assisted tapered channel (asymmetric) under the influence of induced magnetic field and convective heat transfer is investigated.

Design/methodology/approach

Lubrication theory is a key player in the mathematical formulation of momentum, magnetic field and energy equations. The formulated nonlinear and coupled differential equations are solved with the aid of the homotopy perturbation method (HPM). The graphical results are illustrated with the help of the computational software “Mathematica.”

Findings

The impact of diverse emerging physical parameters on velocity, induced magnetic field, pressure rise, current density and temperature profiles is presented graphically. It is observed that the cilia length parameter supported the velocity and current density profiles, while the Hartman number and Weissenberg number were opposed. A promising effect of emerging parameters on streamlines is also perceived.

Originality/value

The study provides novel aspects of cilia-driven induced magnetohydrodynamics flow of Carreau fluid under the influence of induced magnetic field and convective heat transfer through the asymmetric tapered channel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Content available
Book part
Publication date: 24 June 2024

Noel Scott, Brent Moyle, Ana Cláudia Campos, Liubov Skavronskaya and Biqiang Liu

Abstract

Details

Cognitive Psychology and Tourism
Type: Book
ISBN: 978-1-80262-579-0

Article
Publication date: 2 August 2024

Wenxian Zhao

This paper aims to examine the blockchain introduction and altruistic preference decisions of the supplier in agricultural food supply chains and discuss how the supplier…

Abstract

Purpose

This paper aims to examine the blockchain introduction and altruistic preference decisions of the supplier in agricultural food supply chains and discuss how the supplier decisions are influenced by blockchain technology and altruistic preference levels.

Design/methodology/approach

The author considers a single period two-level supply chain model to describe the supplier’s decisions. The supplier, as the leader of the game, decides whether to introduce blockchain technology and his own level of altruistic preferences. Consumers have environmental awareness and heterogeneity in green trust. Supply chain members determine their own product pricing and green effort level under Stackelberg game.

Findings

The results reveal the negative impact of unit verification cost in the technology introduction process on the supply chain. In addition, the supplier can adjust their profits by adjusting their altruistic preferences after introducing blockchain to offset the impact of blockchain through the influence of altruistic preferences as discussed by the author.

Originality/value

This paper investigates how the profits and green efforts of supply chain members are influenced by blockchain technology and altruistic preferences.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 27 August 2024

Mohammad Hossein Hamzezadeh Nakhjavani, Faradjollah Askari and Orang Farzaneh

One of the primary challenges associated with excavation near buildings is the significant decrease in the bearing capacity of nearby foundations during the initial stages before…

Abstract

Purpose

One of the primary challenges associated with excavation near buildings is the significant decrease in the bearing capacity of nearby foundations during the initial stages before the stabilization of the excavation wall. This study aims to investigate the correlation between excavation height and foundation-bearing capacity under actual field conditions.

Design/methodology/approach

This paper uses a three-dimensional rotational failure mechanism to propose a novel method for estimating foundation-bearing capacity using the upper bound limit analysis approach.

Findings

The study delineates two distinct zones in the excavation height versus bearing capacity diagram. Initially, there is a significant reduction in foundation-bearing capacity at the onset of excavation, with decreases of up to 80% compared to its undisturbed state. Within a specific range of excavation heights, the bearing capacity remains relatively constant until reaching a critical height. Beyond this threshold, the entire soil mass behind the excavation wall becomes unstable. The critical excavation height is notably influenced by the soil's internal friction angle, excavation slope angle and soil cohesion parameter. Notably, when the ratio of excavation height to foundation width is less than 0.4, changes in slope angle have no significant impact on bearing capacity.

Originality/value

The bearing capacity estimates derived from the method proposed in this paper are deemed to reflect real-world scenarios closely compared to existing methodologies.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 16 July 2024

Nadia El Amri, Imed Boudabbous and Mouna Yaich

The present work focuses on the primality and the Cartesian product of graphs.

Abstract

Purpose

The present work focuses on the primality and the Cartesian product of graphs.

Design/methodology/approach

Given a graph G, a subset M of V (G) is a module of G if, for a, b ∈ M and x ∈ V (G) \ M, xa ∈ E(G) if and only if xb ∈ E(G). A graph G with at least three vertices is prime if the empty set, the single-vertex sets and V (G) are the only modules of G.

Findings

Motivated by works obtained on “the Cartesian product of graphs” and “the primality,” this paper creates a link between the two notions.

Originality/value

In fact, we study the primality of the Cartesian product of two connected graphs minus k vertices, where k ∈ {0, 1, 2}.

Details

Arab Journal of Mathematical Sciences, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1319-5166

Keywords

Open Access
Article
Publication date: 2 September 2024

Yupaporn Areepong and Saowanit Sukparungsee

The purpose of this paper is to investigate and review the impact of the use of statistical quality control (SQC) development and analytical and numerical methods on average run…

Abstract

Purpose

The purpose of this paper is to investigate and review the impact of the use of statistical quality control (SQC) development and analytical and numerical methods on average run length for econometric applications.

Design/methodology/approach

This study used several academic databases to survey and analyze the literature on SQC tools, their characteristics and applications. The surveys covered both parametric and nonparametric SQC.

Findings

This survey paper reviews the literature both control charts and methodology to evaluate an average run length (ARL) which the SQC charts can be applied to any data. Because of the nonparametric control chart is an alternative effective to standard control charts. The mixed nonparametric control chart can overcome the assumption of normality and independence. In addition, there are several analytical and numerical methods for determining the ARL, those of methods; Markov Chain, Martingales, Numerical Integral Equation and Explicit formulas which use less time consuming but accuracy. New ideas of mixed parametric and nonparametric control charts are effective alternatives for econometric applications.

Originality/value

In terms of mixed nonparametric control charts, this can be applied to all data which no limitation in using of the proposed control chart. In particular, the data consist of volatility and fluctuation usually occurred in econometric solutions. Furthermore, to find the ARL as a performance measure, an explicit formula for the ARL of time series data can be derived using the integral equation and its accuracy can be verified using the numerical integral equation.

Details

Asian Journal of Economics and Banking, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2615-9821

Keywords

Article
Publication date: 9 September 2024

Latifah Falah Alharbi, Umair Khan, Aurang Zaib, S.H.A.M. Shah, Anuar Ishak and Taseer Muhammad

Thermophoresis deposition of particles is a crucial stage in the spread of microparticles over temperature gradients and is significant for aerosol and electrical technologies. To…

Abstract

Purpose

Thermophoresis deposition of particles is a crucial stage in the spread of microparticles over temperature gradients and is significant for aerosol and electrical technologies. To track changes in mass deposition, the effect of particle thermophoresis is therefore seen in a mixed convective flow of Williamson hybrid nanofluids upon a stretching/shrinking sheet.

Design/methodology/approach

The PDEs are transformed into ordinary differential equations (ODEs) using the similarity technique and then the bvp4c solver is employed for the altered transformed equations. The main factors influencing the heat, mass and flow profiles are displayed graphically.

Findings

The findings imply that the larger effects of the thermophoretic parameter cause the mass transfer rate to drop for both solutions. In addition, the suggested hybrid nanoparticles significantly increase the heat transfer rate in both outcomes. Hybrid nanoparticles work well for producing the most energy possible. They are essential in causing the flow to accelerate at a high pace.

Practical implications

The consistent results of this analysis have the potential to boost the competence of thermal energy systems.

Originality/value

It has not yet been attempted to incorporate hybrid nanofluids and thermophoretic particle deposition impact across a vertical stretching/shrinking sheet subject to double-diffusive mixed convection flow in a Williamson model. The numerical method has been validated by comparing the generated numerical results with the published work.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 10000