Search results

1 – 10 of 341
Article
Publication date: 10 January 2024

Zhaozhi Li, Changfu Zhang, Hairong Zhang, Haihui Liu, Zhao Zhu and Liucheng Wang

This study aims to apply an electrochemical grinding (ECG) technology to improve the material removal rate (MRR) under the premise of certain surface roughness in machining U71Mn…

Abstract

Purpose

This study aims to apply an electrochemical grinding (ECG) technology to improve the material removal rate (MRR) under the premise of certain surface roughness in machining U71Mn alloy.

Design/methodology/approach

The effects of machining parameters (electrolyte type, grinding wheel granularity, applied voltage, grinding wheel speed and machining time) on the MRR and surface roughness are investigated with experiments.

Findings

The experiment results show that an electroplated diamond grinding wheel of 46# and 15 Wt.% NaNO3 + 10 Wt.% NaCl electrolyte is more suitable to be applied in U71Mn ECG. And the MRR and surface roughness are affected by machining parameters such as applied voltage, grinding wheel speed and machining time. In addition, the maximum MRR of 0.194 g/min is obtained with the 15 Wt.% NaCl electrolyte, 17 V applied voltage, 1,500 rpm grinding wheel speed and 60 s machining time. The minimum surface roughness of Ra 0.312 µm is obtained by the 15 Wt.% NaNO3 + 10 Wt.% NaCl electrolyte, 13 V applied voltage, 2,000 rpm grinding wheel speed and 60 s machining time.

Originality/value

Under the electrolyte scouring effect, the products and the heat generated in the machining can be better discharged. ECG has the potential to improve MRR and reduce surface roughness in machining U71Mn.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0341/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 1 May 2024

Muhammad Nurul Houqe, Solomon Opare and Muhammad Kaleem Zahir-Ul-Hassan

The purpose of this study is to examine the association between carbon emissions and earnings management (EM). This study also considers the effect of female CEOs on the…

Abstract

Purpose

The purpose of this study is to examine the association between carbon emissions and earnings management (EM). This study also considers the effect of female CEOs on the association between carbon emissions and EM.

Design/methodology/approach

This study uses the carbon disclosure project (CDP) for carbon emissions data, the Compustat database for financial information and the ExecuComp database for female CEOs. The empirical sample of this study consists of 1,692 firm-year observations in the USA that voluntarily participated in the CDP survey from 2007 to 2015. Regression analysis and robustness tests are conducted for this study and both accrual and real EM are considered.

Findings

This study provides evidence that firms with female CEOs who voluntarily disclose their carbon emissions information engage in less real EM. Thus, the presence of female CEOs moderates the association between carbon emissions and EM. This study/paper also finds a positive association between carbon emissions and real EM, although there is an insignificant association between carbon emissions and accruals EM.

Practical implications

The association between carbon emissions and EM has important implications for investors, regulators and policymakers. This study suggests that policymakers should improve the conditions that promote inclusion of females in the top management positions to constrain EM.

Originality/value

This study focuses on the USA, which is one of the major contributors to carbon emissions in the world. The presence of female CEOs moderates the association between carbon emissions and EM and firms with female CEOs show a greater impact on EM.

Details

International Journal of Accounting & Information Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1834-7649

Keywords

Article
Publication date: 12 April 2024

Shivendra Singh Rathore and Chakradhara Rao Meesala

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on…

Abstract

Purpose

The purpose of this paper is to investigate the effect of the replacement of natural coarse aggregate (NCA) with different percentages of recycled coarse aggregate (RCA) on properties of low calcium fly ash (FA)-based geopolymer concrete (GPC) cured at oven temperature. Further, this paper aims to study the effect of partial replacement of FA by ground granulated blast slag (GGBS) in GPC made with both NCA and RCA cured under ambient temperature curing.

Design/methodology/approach

M25 grade of ordinary Portland cement (OPC) concrete was designed according to IS: 10262-2019 with 100% NCA as control concrete. Since no standard guidelines are available in the literature for GPC, the same mix proportion was adopted for the GPC by replacing the OPC with 100% FA and W/C ratio by alkalinity/binder ratio. All FA-based GPC mixes were prepared with 12 M of sodium hydroxide (NaOH) and an alkalinity ratio, i.e. sodium hydroxide to sodium silicate (NaOH:Na2SiO3) of 1:1.5, subjected to 90°C temperature for 48 h of curing. The NCA were replaced with 50% and 100% RCA in both OPC and GPC mixes. Further, FA was partially replaced with 15% GGBS in GPC made with the above percentages of NCA and RCA, and they were given ambient temperature curing with the same molarity of NaOH and alkalinity ratio.

Findings

The workability, compressive strength, split tensile strength, flexural strength, water absorption, density, volume of voids and rebound hammer value of all the mixes were studied. Further, the relationship between compressive strength and other mechanical properties of GPC mixes were established and compared with the well-established relationships available for conventional concrete. From the experimental results, it is found that the compressive strength of GPC under ambient curing condition at 28 days with 100% NCA, 50% RCA and 100% RCA were, respectively, 14.8%, 12.85% and 17.76% higher than those of OPC concrete. Further, it is found that 85% FA and 15% GGBS-based GPC with RCA under ambient curing shown superior performance than OPC concrete and FA-based GPC cured under oven curing.

Research limitations/implications

The scope of the present paper is limited to replace the FA by 15% GGBS. Further, only 50% and 100% RCA are used in place of natural aggregate. However, in future study, the replacement of FA by different amounts of GGBS (20%, 25%, 30% and 35%) may be tried to decide the optimum utilisation of GGBS so that the applications of GPC can be widely used in cast in situ applications, i.e. under ambient curing condition. Further, in the present study, the natural aggregate is replaced with only 50% and 100% RCA in GPC. However, further investigations may be carried out by considering different percentages between 50 and 100 with the optimum compositions of FA and GGBS to enhance the use of RCA in GPC applications. The present study is further limited to only the mechanical properties and a few other properties of GPC. For wider use of GPC under ambient curing conditions, the structural performance of GPC needs to be understood. Therefore, the structural performance of GPC subjected to different loadings under ambient curing with RCA to be investigated in future study.

Originality/value

The replacement percentage of natural aggregate by RCA may be further enhanced to 50% in GPC under ambient curing condition without compromising on the mechanical properties of concrete. This may be a good alternative for OPC and natural aggregate to reduce pollution and leads sustainability in the construction.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 22 June 2022

Serena Summa, Alex Mircoli, Domenico Potena, Giulia Ulpiani, Claudia Diamantini and Costanzo Di Perna

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with…

1116

Abstract

Purpose

Nearly 75% of EU buildings are not energy-efficient enough to meet the international climate goals, which triggers the need to develop sustainable construction techniques with high degree of resilience against climate change. In this context, a promising construction technique is represented by ventilated façades (VFs). This paper aims to propose three different VFs and the authors define a novel machine learning-based approach to evaluate and predict their energy performance under different boundary conditions, without the need for expensive on-site experimentations

Design/methodology/approach

The approach is based on the use of machine learning algorithms for the evaluation of different VF configurations and allows for the prediction of the temperatures in the cavities and of the heat fluxes. The authors trained different regression algorithms and obtained low prediction errors, in particular for temperatures. The authors used such models to simulate the thermo-physical behavior of the VFs and determined the most energy-efficient design variant.

Findings

The authors found that regression trees allow for an accurate simulation of the thermal behavior of VFs. The authors also studied feature weights to determine the most relevant thermo-physical parameters. Finally, the authors determined the best design variant and the optimal air velocity in the cavity.

Originality/value

This study is unique in four main aspects: the thermo-dynamic analysis is performed under different thermal masses, positions of the cavity and geometries; the VFs are mated with a controlled ventilation system, used to parameterize the thermodynamic behavior under stepwise variations of the air inflow; temperatures and heat fluxes are predicted through machine learning models; the best configuration is determined through simulations, with no onerous in situ experimentations needed.

Details

Construction Innovation , vol. 24 no. 7
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 11 March 2024

Hendrik Hensel and Markus Clemens

Gas insulated systems, such as gas insulated lines (GIL), use insulating gas, mostly sulfur hexalfluoride (SF6), to enable a higher dielectric strength compared to e.g. air…

Abstract

Purpose

Gas insulated systems, such as gas insulated lines (GIL), use insulating gas, mostly sulfur hexalfluoride (SF6), to enable a higher dielectric strength compared to e.g. air. However, under high voltage direct current conditions, charge accumulation and electric field stress may occur, which may lead to partial discharge or system failure. Therefore, numerical simulations are used to design the system and determine the electric field and charge distribution. Although the gas conduction shows a more complex current–voltage characteristic compared to solid insulation, the electric conductivity of the SF6 gas is set as constant in most works. The purpose of this study is to investigate different approaches to address the conduction in the gas properly for numerical simulations.

Design/methodology/approach

In this work, two approaches are investigated to address the conduction in the insulating gas and are compared to each other. One method is an ion-drift-diffusion model, where the conduction in the gas is described by the ion motion in the SF6 gas. However, this method is computationally expensive. Alternatively, a less complex approach is an electro-thermal model with the application of an electric conductivity model for the SF6 gas. Measurements show that the electric conductivity in the SF6 gas has a nonlinear dependency on temperature, electric field and gas pressure. From these measurements, an electric conductivity model was developed. Both methods are compared by simulation results, where different parameters and conditions are considered, to investigate the potential of the electric conductivity model as a computationally less expensive alternative.

Findings

The simulation results of both simulation approaches show similar results, proving the electric conductivity for the SF6 gas as a valid alternative. Using the electro-thermal model approach with the application of the electric conductivity model enables a solution time up to six times faster compared to the ion-drift-diffusion model. The application of the model allows to examine the influence of different parameters such as temperature and gas pressure on the electric field distribution in the GIL, whereas the ion-drift-diffusion model enables to investigate the distribution of homo- and heteropolar charges in the insulation gas.

Originality/value

This work presents numerical simulation models for high voltage direct current GIL, where the conduction in the SF6 gas is described more precisely compared to a definition of a constant electric conductivity value for the insulation gas. The electric conductivity model for the SF6 gas allows for consideration of the current–voltage characteristics of the gas, is computationally less expensive compared to an ion-drift diffusion model and needs considerably less solution time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 March 2024

Floriberta Binarti, Pranowo Pranowo, Chandra Aditya and Andreas Matzarakis

This study aims to compare the local climate characteristics of Angkor Wat, Borobudur and Prambanan parks and determine effective strategies for mitigating thermal conditions that…

Abstract

Purpose

This study aims to compare the local climate characteristics of Angkor Wat, Borobudur and Prambanan parks and determine effective strategies for mitigating thermal conditions that could suit Borobudur and Angkor Wat.

Design/methodology/approach

The study employed local climate zone (LCZ) indicators and ten-year historical climate data to identify similarities and differences in local climate characteristics. Satellite imagery processing was used to create maps of LCZ indicators. Meanwhile, microclimate models were used to analyze sky view factors and wind permeability.

Findings

The study found that the three tropical large-scale archaeological parks have low albedo, a medium vegetation index and high impervious surface index. However, various morphological characteristics, aerodynamic properties and differences in temple stone area and altitude enlarge the air temperature range.

Practical implications

Based on the similarities and differences in local climate, the study formulated mitigation strategies to preserve the sustainability of ancient temples and reduce visitors' heat stress.

Originality/value

The local climate characterization of tropical archaeological parks adds to the number of LCZs. Knowledge of the local climate characteristics of tropical archaeological parks can be the basis for improving thermal conditions.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 19 January 2024

Sobhan Pandit, Milan K. Mondal, Dipankar Sanyal, Nirmal K. Manna, Nirmalendu Biswas and Dipak Kumar Mandal

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls…

Abstract

Purpose

This study aims to undertake a comprehensive examination of heat transfer by convection in porous systems with top and bottom walls insulated and differently heated vertical walls under a magnetic field. For a specific nanofluid, the study aims to bring out the effects of different segmental heating arrangements.

Design/methodology/approach

An existing in-house code based on the finite volume method has provided the numerical solution of the coupled nondimensional transport equations. Following a validation study, different explorations include the variations of Darcy–Rayleigh number (Ram = 10–104), Darcy number (Da = 10–5–10–1) segmented arrangements of heaters of identical total length, porosity index (ε = 0.1–1) and aspect ratio of the cavity (AR = 0.25–2) under Hartmann number (Ha = 10–70) and volume fraction of φ = 0.1% for the nanoparticles. In the analysis, there are major roles of the streamlines, isotherms and heatlines on the vertical mid-plane of the cavity and the profiles of the flow velocity and temperature on the central line of the section.

Findings

The finding of a monotonic rise in the heat transfer rate with an increase in Ram from 10 to 104 has prompted a further comparison of the rate at Ram equal to 104 with the total length of the heaters kept constant in all the cases. With respect to uniform heating of one entire wall, the study reveals a significant advantage of 246% rate enhancement from two equal heater segments placed centrally on opposite walls. This rate has emerged higher by 82% and 249%, respectively, with both the segments placed at the top and one at the bottom and one at the top. An increase in the number of centrally arranged heaters on each wall from one to five has yielded 286% rate enhancement. Changes in the ratio of the cavity height-to-length from 1.0 to 0.2 and 2 cause the rate to decrease by 50% and increase by 21%, respectively.

Research limitations/implications

Further research with additional parameters, geometries and configurations will consolidate the understanding. Experimental validation can complement the numerical simulations presented in this study.

Originality/value

This research contributes to the field by integrating segmented heating, magnetic fields and hybrid nanofluid in a porous flow domain, addressing existing research gaps. The findings provide valuable insights for enhancing thermal performance, and controlling heat transfer locally, and have implications for medical treatments, thermal management systems and related fields. The research opens up new possibilities for precise thermal management and offers directions for future investigations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 March 2024

Yuxuan Wu, Wenyuan Xu, Tianlai Yu and Yifan Wang

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the…

Abstract

Purpose

Polyurethane concrete (PUC), as a new type of steel bridge deck paving material, the bond-slip pattern at the interface with the steel plate is not yet clear. In this study, the mechanical properties of the PUC and steel plate interface under the coupled action of temperature, normal force and tangential force were explored through shear tests and numerical simulations. An analytical model for bond-slip at the PUC/steel plate interface and a predictive model for the shear strength of the PUC/steel plate interface were developed.

Design/methodology/approach

The new shear test device designed in this paper overcomes the defect that the traditional oblique shear test cannot test the interface shear performance under the condition of fixed normal force. The universal testing machine (UTM) test machine was used to adjust the test temperature conditions. Combined with the results of the bond-slip test, the finite element simulation of the interface is completed by using the COHENSIVE unit to analyze the local stress distribution characteristics of the interface. The use of variance-based uncertainty analysis guaranteed the validity of the simulation.

Findings

The shear strength (τf) at the PUC-plate interface was negatively correlated with temperature while it was positively correlated with normal stress. The effect of temperature on the shear properties was more significant than that of normal stress. The slip corresponding to the maximum shear (D1) positively correlates with both temperature and normal stress. The interfacial shear ductility improves with increasing temperature.

Originality/value

Based on the PUC bond-slip measured curves, the relationship between bond stress and slip at different stages was analyzed, and the bond-slip analytical model at different stages was established; the model was defined by key parameters such as elastic ultimate shear stress τ0, peak stress τf and interface fracture energy Gf.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 28 March 2024

Hatice Merve Yanardag Erdener and Ecem Edis

Living walls (LWs), vegetated walls with an integrated growth layer behind, are being increasingly incorporated in buildings. Examining plant characteristics’ comparative impacts…

Abstract

Purpose

Living walls (LWs), vegetated walls with an integrated growth layer behind, are being increasingly incorporated in buildings. Examining plant characteristics’ comparative impacts on LWs’ energy efficiency-related thermal behavior was aimed, considering that studies on their relative effects are limited. LWs of varying leaf albedo, leaf transmittance and leaf area index (LAI) were studied for Antalya, Turkey for typical days of four seasons.

Design/methodology/approach

Dynamic simulations run by Envi-met were used to assess the plant characteristics’ influence on seasonal and orientation-based heat fluxes. After model calibration, a sensitivity analysis was conducted through 112 simulations. The minimum, mean and maximum values were investigated for each plant characteristic. Energy need (regardless of orientation), temperature and heat flux results were compared among different scenarios, including a building without LW, to evaluate energy efficiency and variables’ impacts.

Findings

LWs reduced annual energy consumption in Antalya, despite increasing energy needs in winter. South and west facades were particularly advantageous for energy efficiency. The impacts of leaf albedo and transmittance were more significant (44–46%) than LAI (10%) in determining LWs’ effectiveness. The changes in plant characteristics changed the energy needs up to ca 1%.

Research limitations/implications

This study can potentially contribute to generating guiding principles for architects considering LW use in their designs in hot-humid climates.

Originality/value

The plant characteristics’ relative impacts on energy efficiency, which cannot be easily determined by experimental studies, were examined using parametric simulation results regarding three plant characteristics.

Details

Built Environment Project and Asset Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-124X

Keywords

1 – 10 of 341