Search results

1 – 10 of over 3000
Article
Publication date: 3 November 2022

Rajat Yadav, Anas Islam and Vijay Kumar Dwivedi

The purpose of this paper is to study Al-based green composite. To make composite samples of aluminium alloy (AA3105) with different weight percentages of rice husk ash (RHA) and…

64

Abstract

Purpose

The purpose of this paper is to study Al-based green composite. To make composite samples of aluminium alloy (AA3105) with different weight percentages of rice husk ash (RHA) and eggshell (ES) particles as reinforcement, stir casting method was used.

Design/methodology/approach

Several other aspects, including the weight percent of reinforcing agent particles, the applied stress and the sliding speed, were taken into consideration. During the course of the wear test, the sliding distance that was recorded varied from a minimum of 1,000 m all the way up to a maximum of 3,135 m (10, 15, 20, 25 and 30 min). The typical range for normal loads is 8–24 N, and their speed is 1.58 m/s.

Findings

With the AA/ES/RHA composite, the wear rates decreases when the grain size of the reinforcing particles enhanced. Scanning electron microscopy images of worn surfaces show that at low speeds, delaminating and ploughing are the main causes of wear. At high speeds, ploughing is major cause of wear. Composites with better wear-resistant properties can be used in wide range of tribological applications, especially in the automotive industry. It was found that hardness increases at the same time as the weight of the reinforcement increases. Tensile and hardness were maximized at 10% reinforcement mix in Al3105.

Originality/value

In this work, ES and RHA has been used to develop green metal matrix composite to support green revolution as promoted/suggested by United Nations thus reducing the environmental pollution.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 April 2023

Chandra Shekhar Bhatnagar, Dyal Bhatnagar, Vineeta Kumari and Pritpal Singh Bhullar

Increasing focus on socially responsible investments (SRIs) and green projects in recent times, coupled with the arrival of COVID pandemic, are the main drivers of this study. The…

Abstract

Purpose

Increasing focus on socially responsible investments (SRIs) and green projects in recent times, coupled with the arrival of COVID pandemic, are the main drivers of this study. The authors conduct a post-factum analysis of investor choice between sin and green investments before and through the COVID outbreak.

Design/methodology/approach

A passive investor is introduced who seeks maximum risk-adjusted return and/or investment variance. When presented an opportunity to add sin and/or green investments to her initial one-asset market-only investment position, she views and handles this issue as a portfolio problem (MPT). She estimates value-at-risk (VaR) and conditional-value-at-risk (CVaR) for portfolios to account for downside risk.

Findings

Green investments offer better overall risk-return optimization in spite of major inter-period differences in return-risk dynamics and substantial downside risk. Portfolios optimized for minimum variance perform just as well as the ones optimized for minimum downside risk. Return and risk have settled at higher levels since the onset of COVID, resulting in shifting the efficient frontier towards north-east in the return-risk space.

Originality/value

The study contributes to the literature in two ways: One, it examines investor choice between sin and green investments during a global health emergency and views this choice against the one made during normal times. Two, instead of using the principles of modern portfolio theory (MPT) explicitly for diversification, the study uses them to identify investor preference for one over the other investment type. This has not been widely done thus far.

Article
Publication date: 1 July 2022

Anas Islam, Shashi Prakash Dwivedi, Rajat Yadav and Vijay Kumar Dwivedi

The purpose of this study to find an alternate method to minimize waste i.e., eggshell and rice husk ash. In this paper, eggshell (ES) and rice husk ash (RHA) particles are used…

Abstract

Purpose

The purpose of this study to find an alternate method to minimize waste i.e., eggshell and rice husk ash. In this paper, eggshell (ES) and rice husk ash (RHA) particles are used as reinforcements for examining their effect on the coefficient of thermal expansion (CTE), grain size (GS) and corrosion behavior for developed composite material.

Design/methodology/approach

In this investigation, 5 Wt.% each of ES and RHA reinforcement particles have been introduced. To investigate the microstructures of the developed composite material, scanning electron microscope was used. Physical and mechanical properties of composite material are tensile strength and hardness that have been examined.

Findings

The result of this paper shows that number of grains per square inch for composition Al/5% ES/5% RHA composite was found to be 1,243. Minimum value of the volume CTE was found to be 6.67 × 10–6/°C for Al/5% ES/5% RHA composite. The distribution of hard phases of ES particles in metal matrix is responsible for improvements in tensile strength and hardness. These findings demonstrated that using carbonized ES as reinforcement provides superior mechanical and physical properties than using uncarbonized ES particles.

Originality/value

There are several articles examining the impact of varying Wt.% of carbonized ES and rice husk reinforcement on the microstructures and mechanical characteristics of metal composites. CTE, GS and corrosion behavior are among of the features that are examined in this paper.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Book part
Publication date: 5 June 2023

Figen Balo and Lutfu S. Sua

Composites based on fiber are commonly used in high-performance building materials. The composites mostly use petrochemically derived fibers like polyester and e-glass, due to…

Abstract

Composites based on fiber are commonly used in high-performance building materials. The composites mostly use petrochemically derived fibers like polyester and e-glass, due to their advantageous material features like high stiffness and strength. All the same, these fibers also have important shortcomings related to energy consumption, recyclability, initial processing expense, resulting health hazards, and sustainability. Increasing environmental awareness and new sustainable building technologies are driving the research, development, and usage of “green” building materials, especially the development of biomaterials.

In this chapter, the natural fiber evaluation approach is applied, which covers a diverse set of criteria. Consequently, the comparative assessment of diverse natural fiber types is applied through the use of an expert decision system approach. The best performing fiber choice is made by comparatively evaluating the materials related to green building. The proposed fiber can be used and applied by green building material manufacturing companies in various countries or locations as a reference when selecting the fiber with the best performance.

Details

Pragmatic Engineering and Lifestyle
Type: Book
ISBN: 978-1-80262-997-2

Keywords

Article
Publication date: 29 May 2023

Lingyun Cao, Shuaibin Ren, ZhengHao Zhou, Xuening Fei and Changliang Huang

This study aims to fabricate a cool phthalocyanine green/TiO2 composite pigment (PGT) with high near-infrared (NIR) reflectance, good color performance and good heat-shielding…

Abstract

Purpose

This study aims to fabricate a cool phthalocyanine green/TiO2 composite pigment (PGT) with high near-infrared (NIR) reflectance, good color performance and good heat-shielding performance under sunlight and infrared irradiation.

Design/methodology/approach

With the help of anionic and cationic polyelectrolytes, the PGT composite pigment was prepared using a layer-by-layer assembly method under wet ball milling. Based on the light reflectance properties and color performance tested by ultraviolet-visible-NIR spectrophotometer and colorimeter, the preparation conditions were optimized and the properties of PGT pigment with different assembly layers (PGT-1, PGT-3, PGT-5 and PGT-7) were compared. In addition, their heat-shielding performance was evaluated and compared by temperature rise value for their coating under sunlight and infrared irradiation.

Findings

The PGT pigment had a core/shell structure, and the PG thickness increased with the self-assembly layers, which made the PGT-3 and PGT-7 pigment show higher color purity and saturation than PGT-1 pigment. In addition, the PGT-3 and PGT-7 pigment showed 11%–16% lower light reflectance in the visible region. However, their light reflectance in the NIR region was similar. Under infrared irradiation the PGT-5 and PGT-7 pigment coating showed 1.1°C–3.4°C and 1.3°C–4.7°C lower temperature rise value than PGT-1 pigment coating and physical mixture pigment coating, respectively. And under sunlight the PGT-3 pigment coating showed 1.5–2.6°C lower temperature rise value than the physical mixture pigment coating.

Originality/value

The layer-by-layer assembling makes the core/shell PGT composite pigment possess low visible light reflectance, high NIR reflectance and good heat-shielding performance.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 14 June 2023

Joseph Lok-Man Lee, Vanessa Liu and Calvin Cheng

Unlike traditional products and services, customer motivation to purchase green products/services may be due to non-marketing factors, such as their personal values about health…

Abstract

Purpose

Unlike traditional products and services, customer motivation to purchase green products/services may be due to non-marketing factors, such as their personal values about health. In this study, the authors aim to propose and validate an integrative model using both advertising attitude factors and health beliefs to explain purchase intention and word of mouth in the context of green marketing. The authors focus specifically on collectivist consumers as values and social norms that tend to be more salient in driving their decisions.

Design/methodology/approach

The model was tested empirically using a survey study with 308 Chinese consumers in Hong Kong. The data were analyzed using confirmatory composite analysis (CCA) and partial least squares structural equation modeling.

Findings

All health beliefs were significant predictors of green advertising attitude. Green satisfaction fully mediates the relationship between green advertising attitude and positive word of mouth for products and services with green advertising for collectivist Chinese consumers. Meanwhile, green satisfaction partially mediates the relationship between green advertising attitude and purchase intention. In addition, green brand equity partially mediates the green advertising attitude–purchase intention/positive word of mouth link.

Practical implications

The significant impacts of health belief factors on green advertising attitude present important implications to advertising managers in terms of the use of information appeal in promoting green products/services. Green brand equity should also be developed in order to optimize green advertising effectiveness, especially in the context of collectivist customers.

Originality/value

This research is one of the first few studies investigating the mediating role of green satisfaction and green brand equity for collectivist consumer behaviors based on the health belief model (HBM).

Details

Asia Pacific Journal of Marketing and Logistics, vol. 35 no. 12
Type: Research Article
ISSN: 1355-5855

Keywords

Article
Publication date: 16 November 2021

M. Balasubramanian, Thozhuvur Govindaraman Loganathan and R. Srimath

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Abstract

Purpose

The purpose of this study is to understand the behavior of hybrid bio-composites under varied applications.

Design/methodology/approach

Fabrication methods and material characterization of various hybrid bio-composites are analyzed by studying the tensile, impact, flexural and hardness of the same. The natural fiber is a manufactured group of assembly of big or short bundles of fiber to produce one or more layers of flat sheets. The natural fiber-reinforced composite materials offer a wide range of properties that are suitable for many engineering-related fields like aerospace, automotive areas. The main characteristics of natural fiber composites are durability, low cost, low weight, high specific strength and equally good mechanical properties.

Findings

The tensile properties like tensile strength and tensile modulus of flax/hemp/sisal/Coir/Palmyra fiber-reinforced composites are majorly dependent on the chemical treatment and catalyst usage with fiber. The flexural properties of flax/hemp/sisal/coir/Palmyra are greatly dependent on fiber orientation and fiber length. Impact properties of flax/hemp/sisal/coir/Palmyra are depended on the fiber content, composition and orientation of various fibers.

Originality/value

This study is a review of various research work done on the natural fiber bio-composites exhibiting the factors to be considered for specific load conditions.

Details

World Journal of Engineering, vol. 20 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 27 September 2023

Awa Traoré and Simplice Asongu

A promising solution to meet the challenge of sustainability and ensure the protection of the environment consists in acting considerably on the adoption and use of new…

Abstract

Purpose

A promising solution to meet the challenge of sustainability and ensure the protection of the environment consists in acting considerably on the adoption and use of new information and communication technologies. The latter can act on the protection of the environment; completely change manufacturing processes into energy-efficient, eco-friendly techniques or influence institutions and governance. The article attempts to cover shortcomings in the literature by providing a couple of theoretical frameworks and grounded empirical proofs for the dissemination of green technologies and the interaction of the latter with institutional quality.

Design/methodology/approach

The sample is made up of 43 African countries covering the period 2000–2020 and a panel VAR modeling approach is employed.

Findings

Our results show that an attenuation of CO2 emissions amplifies the diffusion of digital technologies (mobile telephones and Internet). Efficiency in the institutional quality of African countries is mandatory for environmental preservation. Moreover, the provision of a favorable institutional framework in favor of renewable energy helps to stimulate environmental performance in African states.

Originality/value

This study complements the extant literature by assessing nexuses between green technology and CO2 emissions in environmental sustainability.

Details

Management of Environmental Quality: An International Journal, vol. 35 no. 2
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 16 April 2024

P. Gunasekar, Anderson A. and Praveenkumar T.R.

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and…

Abstract

Purpose

Composite materials have revolutionized the aerospace industry by offering superior structural qualities over traditional elements. This study aims to focus on the development and testing of bamboo natural fiber-based composites enhanced with SiO2 nanoparticles.

Design/methodology/approach

The investigation involved fabricating specimens with varying nanoparticle compositions (0, 10 and 20%) and conducting tensile, flexural, impact and fracture toughness tests. Results indicated significant improvements in mechanical properties with the addition of nanoparticles, particularly at a 10% composition level.

Findings

This study underscores the potential of natural fiber composites, highlighting their environmental friendliness, cost-effectiveness and improved structural properties when reinforced with nanoparticles. The findings suggest an optimal ratio for nanoparticle integration, emphasizing the critical role of precise mixing proportions in achieving superior composite performance.

Originality/value

The tensile strength, flexural strength, impact resistance and fracture toughness exhibited notable enhancements compared with the 0 and 20% nanoparticle compositions. The 10% composition showed the most promising outcomes, showcasing increased strength across all parameters.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 May 2023

I. Aliyu, S.M. Sapuan, E.S. Zainudin, M.Y.M. Zuhri and Y. Ridwan

The conflicting results on the corrosion characteristics of aluminium matrix composites reinforced with agrarian waste have stimulated an investigation on the hardness and…

Abstract

Purpose

The conflicting results on the corrosion characteristics of aluminium matrix composites reinforced with agrarian waste have stimulated an investigation on the hardness and corrosion rate of sugar palm fibre ash (SPFA) reinforced LM26 Al/alloy composite by varying the SPFA from 0 to 10 wt% in an interval of 2 wt%. This paper aims to discuss the aforementioned issue.

Design/methodology/approach

The composites were produced via stir-casting and the hardness was determined using a Vickers hardness testing machine, corrosion rate was examined through the weight loss method by immersion in 0.5, 1.0 and 1.5 M hydrochloric acid (HCl) at temperatures of 303, 318, and 333 K for the maximum duration of 120 h. The morphological study was conducted using a scanning electron microscope (SEM) on the samples before and after immersion in HCl.

Findings

The incorporation of SPFA improved the hardness of the alloy from 58.22 to 93.62 VH after 10 wt% addition. The corrosion rate increases with increased content of SPFA, the concentration of HCl and temperature. The least corrosion rate of 0.0272 mpy was observed for the LM26 Al alloy in 0.5 M after 24 h while the highest corrosion rate of 0.8511 mpy was recorded for LM26 Al/10 wt% SPFA in 1.5 M HCl acid after 120 h. The SEM image of corroded samples revealed an increased number of pits with increased SPFA content.

Research limitations/implications

The work is limited to SPFA up to 10 wt% as reinforcement in LM26 Al alloy, the use of HCl as corrosion medium, temperatures in the range of 303–333 K, and a weight loss method were used to evaluate the corrosion rate.

Originality/value

The corrosion rate was determined for LM26 Al/SPFA composites with various amounts of SPFA in 0.5, 1.0 and 1.5 M HCl at 303, 318 and 333 K and compared with the matrix alloy.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of over 3000