Search results

1 – 10 of over 8000
Article
Publication date: 1 July 2004

J.L. Xu, Z.Q. Zhou and X.D. Xu

The molecular dynamics simulation of micro‐Poiseuille flow for liquid argon in nanoscale was performed in non‐dimensional unit system with the control parameters of channel size…

1793

Abstract

The molecular dynamics simulation of micro‐Poiseuille flow for liquid argon in nanoscale was performed in non‐dimensional unit system with the control parameters of channel size, coupling parameters between solid wall and liquid particles, and the gravity force. The molecular forces are considered not only among the liquid molecules, but also between the solid wall and liquid molecules. The simulation shows that a larger gravity force produces a larger shear rate and a higher velocity distribution. In terms of the gravity force, there are three domain regions each with distinct flow behaviors: free molecule oscillation, coupling and gravity force domain regions. Stronger fluid/wall interactions can sustain a larger coupling region, in which the flow is controlled by the balance of the intermolecular force and the gravity force. Strong surface interaction leads to small slip lengths and the slip lengths are increased slightly with increasing the shear rate. Weak surface interaction results in higher slip lengths and the slip lengths are dramatically decreased with increasing the shear rate. The viscosities are nearly kept constant (Newton flow behavior) if the non‐dimensional shear rate is below 2.0. At higher non‐dimensional shear rate larger than 2.0, the viscosities have a sharp increase with increasing the shear rate, and the non‐Newton flow appears.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 July 2015

Shaochun Wang and Ru Zhao

The purpose of this paper is to describe a technical creation called a constant-force cylinder, which exhibits more advantages in providing constant force in a low-gravity

1113

Abstract

Purpose

The purpose of this paper is to describe a technical creation called a constant-force cylinder, which exhibits more advantages in providing constant force in a low-gravity environment than some existing methods.

Design/methodology/approach

The authors design the constant-force cylinder with simple ideas and realistic applicability that is easy to achieve. The authors analyze and formulate the cylinder, and explain how the realization of constant force and low gravity are obtained during the experiment by calculations. Force analysis and simple mathematics/statistics are used in the calculation.

Findings

The authors prove the effectiveness and accuracy of the constant and low-gravity properties of the new cylinder. In addition, the authors formulate the acceleration value to drive the cylinder which is flexible and easy to be adjusted during the experiment.

Practical implications

The constant-force cylinder can be functioning in a low-gravity environment with simple structures and economical extensions to real-world applications.

Originality/value

This is an innovative design of a constant-force cylinder under the low-gravity environment. In the experiment, the new cylinder was revised from an ordinary and economic cylinder with constant force and the applicability easy to be realized in practice.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 January 1991

1.1. Logical Necessity of the Three Dimensions as a Unit of Thought The mathematician does not look kindly on the simple question of why natural space should consist of precisely…

Abstract

1.1. Logical Necessity of the Three Dimensions as a Unit of Thought The mathematician does not look kindly on the simple question of why natural space should consist of precisely three dimensions. Instead of giving an answer he assumes a silent smile and shows us a version of space with an infinity of dimensions, as if space were some kind of toy for him to fiddle with to his heart's content.

Details

International Journal of Social Economics, vol. 18 no. 1/2/3
Type: Research Article
ISSN: 0306-8293

Article
Publication date: 27 July 2019

Fun Liang Chang and Yew Mun Hung

This paper aims to investigate the coupled effects of electrohydrodynamic and gravity forces on the circulation effectiveness of working fluid in an inclined micro heat pipe…

Abstract

Purpose

This paper aims to investigate the coupled effects of electrohydrodynamic and gravity forces on the circulation effectiveness of working fluid in an inclined micro heat pipe driven by electroosmotic flow. The effects of the three competing forces, namely, the capillary, the gravitational and the electrohydrodyanamic forces, on the circulation effectiveness of a micro heat pipe are compared and delineated.

Design/methodology/approach

The numerical model is developed based on the conservations of mass, momentum and energy with the incorporation of the Young–Laplace equation for electroosmotic flow in an inclined micro heat pipe incorporating the gravity effects.

Findings

By inducing electroosmotic flow in a micro heat pipe, a significant increase in heat transport capacity can be attained at a reasonably low applied voltage, leading to a small temperature drop and a high thermal conductance. However, the favorably applied gravity forces pull the liquid toward the evaporator section where the onset of flooding occurs within the condenser section, generating a throat that shrinks the vapor flow passage and may lead to a complete failure on the operation of micro heat pipe. Therefore, the balance between the electrohydrodyanamic and the gravitational forces is of vital importance.

Originality/value

This study provides a detailed insight into the gravitational and electroosmotic effects on the thermal performance of an inclined micro heat pipe driven by electroosmotic flow and paves the way for the feasible practical application of electrohydrodynamic forces in a micro-scale two-phase cooling device.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 2003

B. Paul Gibson

Light, when constructed in terms of the elementary quanta of light, may be viewed in particle‐like or wave‐like terms. The elementary quanta of light, when placed in motion…

Abstract

Light, when constructed in terms of the elementary quanta of light, may be viewed in particle‐like or wave‐like terms. The elementary quanta of light, when placed in motion through space/time at a speed of a constancy of c forms a light path through the space or reference frame viewed. The light path formed is curved, as space/time is curved. The curvilinear light path formed is a function of the gravitational potential within the viewed frame of reference. The linear description of this light path, termed the geodesic (Riemannian), does not describe the curvilinear light path, but rather the chord of the curvilinear path described by the inscribed arc. This linear description of the light path is the manner in which we describe the coordinate system involved, and is the same manner in which we determine the “speed of light”. The arc length of the light path, compared to the lesser value as described by the chord length, allows for a displacement to be determined, if both measures are applied to a linear measure. A displacement of linear coordinates then occurs, with this displacement a result of the gravitational potential occurring within the frame viewed. This displacement, derived via observation and predictions of the quantum model, resolves Maxwell as well as Newton. The theory concludes that the Special Theory of Relativity, suitably modified to account for gravitational displacement within one particular frame, derives a precise relative model of gravitation within the special frame. This model satisfies Newton, as the model arrives at an exact description of the three‐body problem.

Details

Kybernetes, vol. 32 no. 7/8
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 17 February 2023

Kang Min, Fenglei Ni and Hong Liu

The purpose of the paper is to propose an efficient and accurate force/torque (F/T) sensing method for the robotic wrist-mounted six-dimensional F/T sensor based on an excitation…

Abstract

Purpose

The purpose of the paper is to propose an efficient and accurate force/torque (F/T) sensing method for the robotic wrist-mounted six-dimensional F/T sensor based on an excitation trajectory.

Design/methodology/approach

This paper presents an efficient and accurate F/T sensing method based on an excitation trajectory. First, the dynamic identification model is established by comprehensively considering inertial forces/torques, sensor zero-drift values, robot base inclination errors and forces/torques caused by load gravity. Therefore, the sensing accuracy is improved. Then, the excitation trajectory with optimized poses is used for robot following and data acquisition. The data acquisition is not limited by poses and its time can be significantly shortened. Finally, the least squares method is used to identify parameters and sense contact forces/torques.

Findings

Experiments have been carried out on the self-developed robot manipulator. The results strongly demonstrate that the proposed approach is more efficient and accurate than the existing widely-adopted method. Furthermore, the data acquisition time can be shortened from more than 60 s to 3 s/20 s. Thus, the proposed approach is effective and suitable for fast-paced industrial applications.

Originality/value

The main contributions of this paper are as follows: the dynamic identification model is established by comprehensively considering inertial forces/torques, sensor zero-drift values, robot base inclination errors and forces/torques caused by load gravity; and the excitation trajectory with optimized poses is used for robot following and data acquisition.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 2000

Mohammad Jashim Uddin, Yasuo Nasu, Kazuhisa Mitobe and Kou Yamada

Presents the manipulation methods of a low powered direct‐drive robot‐arm for heavy object manipulation using a suspension device. Considers manipulation of a suspended tool in…

Abstract

Presents the manipulation methods of a low powered direct‐drive robot‐arm for heavy object manipulation using a suspension device. Considers manipulation of a suspended tool in the horizontal plane. Presents the algorithm of the hybrid position/force tracking scheme with respect to the dynamic behavior of suspended tools in the horizontal plane. To manipulate the suspended robot‐arm vertically, the hybrid position/force dynamic model has been developed by considering the gravity compensation of the spring balancer. In order to show the possible industrial applications chamfering operations have been carried out. Simulations and experiments demonstrate the feasibility of the proposed systems.

Details

Industrial Robot: An International Journal, vol. 27 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 June 2019

Masoud Mozaffari, Annunziata D’Orazio, Arash Karimipour, Ali Abdollahi and Mohammad Reza Safaei

The purpose of this paper is to improve the lattice Boltzmann method’s ability to simulate a microflow under constant heat flux.

Abstract

Purpose

The purpose of this paper is to improve the lattice Boltzmann method’s ability to simulate a microflow under constant heat flux.

Design/methodology/approach

Develop the thermal lattice Boltzmann method based on double population of hydrodynamic and thermal distribution functions.

Findings

The buoyancy forces, caused by gravity, can change the hydrodynamic properties of the flow. As a result, the gravity term was included in the Boltzmann equation as an external force, and the equations were rewritten under new conditions.

Originality/value

To the best of the authors’ knowledge, the current study is the first attempt to investigate mixed-convection heat transfer in an inclined microchannel in a slip flow regime.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 7 August 2017

Hector Barrios-Piña, Stéphane Viazzo and Claude Rey

The purpose of this paper is to show a thermodynamic analysis to determine the contribution of each term of the total energy balance.

Abstract

Purpose

The purpose of this paper is to show a thermodynamic analysis to determine the contribution of each term of the total energy balance.

Design/methodology/approach

The thermodynamic analysis comprises a number of numerical simulations where some terms, typically ignored by the commonly used approximations, are removed from the total energy equation to quantify the effects in the flow and heat transfer fields. The case study is the differentially heated square cavity flow, in which the effects of work done by the pressure forces contribute significantly to the energy balance. Because local magnitudes are computed here for discussion, the dimensional form of the governing equations is preferred and a numerical model without any restrictive approximation about the role of the pressure is used.

Findings

The results show that the work of gravity forces term is in perfect balance with the work of pressure forces term, and thus, ignoring the contribution of one of them yields an incorrect solution. In addition, it is shown that the assumption of zero divergence of the Boussinesq approximation can be erroneous, even for a natural convection flow case where the temperature difference is very small.

Research limitations/implications

As the flow and heat transfer governing equations are complex, simplifying assumptions are generally used; that is, the Boussinesq and low Mach number approximations. These assumptions are systematically adopted without any validation process and without considering that they modify the physical meaning of one or more of the thermodynamic quantities, particularly the pressure. This fact results in inconsistencies of the different forms of energy.

Originality/value

This is the first time that the terms of the total energy balance are quantified in such a way, in a differentially heated square cavity flow, which is a case study addressed by several authors.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 28 December 2021

Lin Meng, Yang Gao, Yangyang Liu and Shengfang Lu

As a short take-off and landing aircraft, FanWing has the capability of being driven under power a short distance from a parking space to the take-off area. The purpose of this…

Abstract

Purpose

As a short take-off and landing aircraft, FanWing has the capability of being driven under power a short distance from a parking space to the take-off area. The purpose of this paper is to design the take-off control system of FanWing and study the factors that influence the short take-off performance under control.

Design/methodology/approach

The force analysis of FanWing is studied in the take-off phase. Two take-off control methods are researched, and several factors that influence the short take-off performance are studied under control.

Findings

The elevator and fan wing control systems are designed. Although the vehicle load increases under the fan wing control, the fan wing control is not a recommended practice in the take-off phase for its sensitivity to the pitch angle command. The additional pitch-down moment has a significant influence on the control system and the short take-off performance that the barycenter variation of FanWing should be considered carefully.

Practical implications

The presented efforts provide a reference for the location of the center of gravity in designing FanWing. The traditional elevator control is more recommended than the fan wing control in the take-off phase.

Originality/value

This paper offers a valuable reference on the control system design of FanWing. It also proves that there is an additional pith-down moment that needs to be paid close attention to. Four factors that influence the short take-off performance are compared under control.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of over 8000