Search results

1 – 10 of 167
Article
Publication date: 11 August 2023

Wee Fhong Ow, Shirley Jin Lin Chua and Azlan Shah Ali

This paper aims to explore the history of Anglican churches in Malaysia and discusses their typical features and their respective maintenance practices.

Abstract

Purpose

This paper aims to explore the history of Anglican churches in Malaysia and discusses their typical features and their respective maintenance practices.

Design/methodology/approach

A narrative review of 84 literacy sources published between 1967 and 2020 on the development and features of Anglican churches in Malaysia, along with recommendations on maintenance practices from the asset and facilities management perspective. The exploration of churches’ features follows three main disciplines in building maintenance according to the Jabatan Kerja Raya Guideline for as-built buildings in Malaysia.

Findings

The findings of the study have then been tabulated to form a maintenance framework to recommend suitable maintenance practices on specific building components based on different materials. The paper argues that as places of worship, the assets of religious facilities are intangible compared to any other types of building that serve a tangible function (i.e. shelter, commercial or industrial operation). Throughout the exploration of their maintenance practices suggested by vast sources of literature, it is proven that the maintenance of churches is not as straightforward as merely remedying the defects, but it requires the maintenance to radically minimise any disturbance to their aesthetics, thus making maintenance a more challenging task at churches.

Originality/value

This paper proposes a maintenance framework for Anglican churches in Malaysia by categorising building disciplines and their corresponding building components, which supports future research to improve the maintenance practices of religious facilities.

Details

Journal of Facilities Management , vol. 21 no. 4
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 16 February 2024

Sergejs Pavlovs, Andris Jakovičs and Alexander Chudnovsky

The purpose of this paper is the study of the electro-vortex flow (EVF) as well as heating and melting processes for mini industrial direct current electric arc furnace (DC EAF).

Abstract

Purpose

The purpose of this paper is the study of the electro-vortex flow (EVF) as well as heating and melting processes for mini industrial direct current electric arc furnace (DC EAF).

Design/methodology/approach

A mini DC EAF was designed, manufactured and installed to study the industrial processes of heating and melting a small amount of melt, being 4.6 kg of steel in the case under study. Numerical modelling of metal melting was performed using the enthalpy and porosity approach at equal values and non-equal values of the solidus and liquidus temperatures of the metal. The EVF of the liquid phase of metal was computed using the large eddy simulation model of turbulence. Melt temperature measurements were made using an infrared camera and a probe with a thermocouple sensor. The melt speed was estimated by observing the movement of particles at the top surface of melt.

Findings

The thermal flux for metal heating and melting, which is supplied through an arc spot at the top surface of metal, is estimated using the thermal balance of the furnace at melting point. The melting time was estimated using numerical modelling of heating and melting of metal. The process started at room temperature and finished once whole volume of metal was molten. The evolution of the solid/melt phase boundary as well as evolution of EVF patterns of the melt was studied.

Originality/value

Numerical studies of heating and melting processes in metal were performed in the case of intensive liquid phase turbulent circulation due to the Lorentz force in the melt, which results from the interaction of electrical current with a self-magnetic field.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 3 January 2023

Mohammad Saleh Afsharkohan, Saman Dehrooyeh, Majid Sohrabian and Majid Vaseghi

Fabrication settings such as printing speed and nozzle temperature in fused deposition modeling undeniably influence the quality and strength of fabricated parts. As available…

Abstract

Purpose

Fabrication settings such as printing speed and nozzle temperature in fused deposition modeling undeniably influence the quality and strength of fabricated parts. As available market filaments do not contain any exact information report for printing settings, manufacturers are incapable of achieving desirable predefined print accuracy and mechanical properties for the final parts. The purpose of this study is to determine the importance of selecting suitable print parameters by understanding the intrinsic behavior of the material to achieve high-performance parts.

Design/methodology/approach

Two common commercial polylactic acid filaments were selected as the investigated samples. To study the specimens’ printing quality, an appropriate scaffold geometry as a delicate printing sample was printed according to a variety of speeds and nozzle temperatures, selected in the filament manufacturer’s proposed temperature range. Dimensional accuracy and qualitative surface roughness of the specimens made by one of the filaments were evaluated and the best processing parameters were selected. The scaffolds were fabricated again by both filaments according to the selected proper processing parameters. Material characterization tests were accomplished to study the reason for different filament behaviors in the printing process. Moreover, the correlations between the polymer structure, thermo-rheological behavior and printing parameters were denoted.

Findings

Compression tests revealed that precise printing of the characterized filament results in more accurate structure and subsequent improvement of the final printed sample elastic modulus.

Originality/value

The importance of material characterization to achieve desired properties for any purpose was emphasized. Obtained results from the rheological characterizations would help other users to benefit from the highest performance of their specific filament.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 June 2023

Kawaljit Singh Randhawa

The purpose of this study is to look into the hygroscopic and tribo-mechanical properties of a polypropylene/polyamide-6 (PP/PA6) blend and a PP/PA6/Boron sesquioxide composite.

Abstract

Purpose

The purpose of this study is to look into the hygroscopic and tribo-mechanical properties of a polypropylene/polyamide-6 (PP/PA6) blend and a PP/PA6/Boron sesquioxide composite.

Design/methodology/approach

The hygroscopic behaviour of the PP/PA6 blend and PP/PA6/Boron sesquioxide composite was studied using a water contact angle goniometer in this study. To validate the hygroscopic behaviour of the blend and composite, water contact angles and surface energy of the materials were investigated. Tensile strength and hardness tests were used to determine mechanical characteristics, and tribological experiments on a pin-on-disc tribometer were used to demonstrate the friction and wear rates of dry and water-conditioned blends and composites. The melting temperature of dry and water-conditioned composites was determined using DSC analysis.

Findings

The hygroscopic effect of the PP/PA6 blend was found to be minimal in the experiment, while it was relatively dominating in the PP/PA6/Boron sesquioxide composite. Tensile strength was found to be somewhat lower in blend and composite compared to virgin PP, whereas hardness was found to be higher in both blend and composite. The composite’s tribological testing findings were fairly outstanding, with the coefficient of friction (COF) and wear rates significantly reduced due to boron sesquioxide reinforcement. The reaction between boron sesquioxide and water molecules produced boric acid, which increased the tribological characteristics of the composite even further. Following 30 days of water conditioning, the weight of the blend increased by 3.64% and the weight of the composite increased by 6.45% as compared to the dry materials. After water conditioning, tensile strength reduced by 0.8% for the blend and 14.16% for the composite. Hardness was determined to be the same in the dry state and after water-conditioning for blend but dropped 1% for composite. As compared to blend, the COF and wear resistance of composite were 15.52% and 25.16% higher, respectively. After absorbing some water, the results increased to 28.57% and 34.9%, respectively.

Originality/value

The mechanical and thermal behaviour of polymer composites (particularly polyamide composites) vary depending on the surrounding environment. Tests were carried out to explore the effect of water treatment on the tribo-mechanical and thermal characteristics of PP/PA6/Boron sesquioxide composite. Water treatment caused polyamides to bind with water molecules, resulting in voids in the material. The interaction between boron sesquioxide and water molecules produced boric acid, which increased the tribological characteristics of the composite.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 12 April 2024

Celia Rufo-Martín, Ramiro Mantecón, Geroge Youssef, Henar Miguelez and Jose Díaz-Álvarez

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth…

Abstract

Purpose

Polymethyl methacrylate (PMMA) is a remarkable biocompatible material for bone cement and regeneration. It is also considered 3D printable but requires in-depth process–structure–properties studies. This study aims to elucidate the mechanistic effects of processing parameters and sterilization on PMMA-based implants.

Design/methodology/approach

The approach comprised manufacturing samples with different raster angle orientations to capitalize on the influence of the filament alignment with the loading direction. One sample set was sterilized using an autoclave, while another was kept as a reference. The samples underwent a comprehensive characterization regimen of mechanical tension, compression and flexural testing. Thermal and microscale mechanical properties were also analyzed to explore the extent of the appreciated modifications as a function of processing conditions.

Findings

Thermal and microscale mechanical properties remained almost unaltered, whereas the mesoscale mechanical behavior varied from the as-printed to the after-autoclaving specimens. Although the mechanical behavior reported a pronounced dependence on the printing orientation, sterilization had minimal effects on the properties of 3D printed PMMA structures. Nonetheless, notable changes in appearance were attributed, and heat reversed as a response to thermally driven conformational rearrangements of the molecules.

Originality/value

This research further deepens the viability of 3D printed PMMA for biomedical applications, contributing to the overall comprehension of the polymer and the thermal processes associated with its implementation in biomedical applications, including personalized implants.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 November 2022

Juan Esteban Aponte Gonzalez, William Jordan Wright, Raden Gustinvil and Emrah Celik

Direct ink writing (DIW) is a robust additive manufacturing technology for the fabrication of fiber-reinforced thermoset composites. However, this technique is currently limited…

Abstract

Purpose

Direct ink writing (DIW) is a robust additive manufacturing technology for the fabrication of fiber-reinforced thermoset composites. However, this technique is currently limited to low design complexity and minimal heights. This study aims to investigate the feasibility of UV-assisted DIW of composites to enhance the green-part strength of the printed inks and resolve the complexity and the height limitations of DIW technology.

Design/methodology/approach

The experimental approach involved the preparation of the thermoset inks that are composed of nanoclay, epoxy, photopolymer and glass fiber reinforcement. Composite specimens were fabricated in complex geometries from these ink feedstocks using UV-assisted, hybrid 3D-printing technology. Fabricated specimens were characterized using optical microscopy, three-point bending mechanical tests and numerical simulations.

Findings

The introduced hybrid, UV-assisted 3D-printing technology allowed the fabrication of tall and overhanging thermoset composite structures up to 30% glass fiber reinforcement without sagging during or after printing. Glass fiber reinforcement tremendously enhanced the mechanical performance of the composites. UV-curable resin addition led to a reduction in strength (approximately 15%) compared to composites fabricated without UV resin. However, this reduction can be eliminated by increasing the glass fiber content within the hybrid thermoset composite. Numerical simulations indicate that the fiber orientation significantly affects the mechanical performance of the printed composites.

Originality/value

This study showed that the fabrication of high-performing thermoset composites in complex geometries was possible via hybrid DIW technology. This new technology will tremendously expand the application envelope of the additively manufactured thermoset composites and the fabrication of large composite structures with high mechanical performance and dimensional freedom will benefit various engineering fields including the fields of aerospace, automotive and marine engineering.

Details

Rapid Prototyping Journal, vol. 29 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 26 April 2024

Sultan Mohammed Althahban, Mostafa Nowier, Islam El-Sagheer, Amr Abd-Elhady, Hossam Sallam and Ramy Reda

This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the…

Abstract

Purpose

This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the number of layers of patches, whether a single or double patch is used and how well debonding the area under the patch improves the strength of the cracked aluminum plates with different crack lengths.

Design/methodology/approach

Single-edge cracked aluminum specimens of 150 mm in length and 50 mm in width were tested using the tensile test. The cracked aluminum specimens were then repaired using GFRP patches with various configurations. A three-dimensional (3D) finite element method (FEM) was adopted to simulate the repaired cracked aluminum plates using composite patches to obtain the stress intensity factor (SIF). The numerical modeling and validation of ABAQUS software and the contour integral method for SIF calculations provide a valuable tool for further investigation and design optimization.

Findings

The width of the GFRP patches affected the efficiency of the rehabilitated cracked aluminum plate. Increasing patch width WP from 5 mm to 15 mm increases the peak load by 9.7 and 17.5%, respectively, if compared with the specimen without the patch. The efficiency of the GFRP patch in reducing the SIF increased as the number of layers increased, i.e. the maximum load was enhanced by 5%.

Originality/value

This study assessed repairing metallic structures using the chopped strand mat GFRP. Furthermore, it demonstrated the superiority of rectangular patches over semicircular ones, along with the benefit of using double patches for out-of-plane bending prevention and it emphasizes the detrimental effect of defects in the bonding area between the patch and the cracked component. This underlines the importance of proper surface preparation and bonding techniques for successful repair.

Graphical abstract

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Article
Publication date: 28 February 2023

Mirsadegh Seyedzavvar

This paper aims to study the effects of inorganic CaCO3 nanoadditives in the polylactic acid (PLA) matrix and fused filament fabrication (FFF) process parameters on the mechanical…

Abstract

Purpose

This paper aims to study the effects of inorganic CaCO3 nanoadditives in the polylactic acid (PLA) matrix and fused filament fabrication (FFF) process parameters on the mechanical characteristics of 3D-printed components.

Design/methodology/approach

The PLA filaments containing different levels of CaCO3 nanoparticles have been produced by mix-blending/extrusion process and were used to fabricate tensile and three-point bending test samples in FFF process under various sets of printing speed (PS), layer thickness (LT), filling ratio (FR) and printing pattern (PP) under a Taguchi L27 orthogonal array design. The quantified values of mechanical characteristics of 3D-printed samples in the uniaxial and the three-point bending experiments were modeled and optimized using a hybrid neural network/particle swarm optimization algorithm. The results of this hybrid scheme were used to specify the FFF process parameters and the concentration of nanoadditive in the matrix that result in the maximum mechanical properties of fabricated samples, individually and also in an accumulative response scheme. Diffraction scanning calorimetry (DSC) tests were conducted on a number of samples and the results were used to interpret the variations observed in the response variables of fabricated components against the FFF parameters and concentration of CaCO3 nanoadditives.

Findings

The results of optimization in an accumulative scheme showed that the samples of linear PP, fabricated at high PS, low LT and at 100% FR, while containing 0.64% of CaCO3 nanoadditives in the matrix, would possess the highest mechanical characteristics of 3D-printed PLA components.

Originality/value

FFF is a widely accepted additive manufacturing technique in production of different samples, from prototypes to the final products, in various sectors of industry. The incorporation of chopped fibers and nanoparticles has been introduced recently in a few articles to improve the mechanical characteristics of produced components in FFF technique. However, the effectiveness of such practice is strongly dependent on the extrusion parameters and composition of polymer matrix.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 13 February 2024

Federico Lanzalonga, Roberto Marseglia, Alberto Irace and Paolo Pietro Biancone

Our study examines how artificial intelligence (AI) can enhance decision-making processes to promote circular economy practices within the utility sector.

Abstract

Purpose

Our study examines how artificial intelligence (AI) can enhance decision-making processes to promote circular economy practices within the utility sector.

Design/methodology/approach

A unique case study of Alia Servizi Ambientali Spa, an Italian multi-utility company using AI for waste management, is analyzed using the Gioia method and semi-structured interviews.

Findings

Our study discovers the proactive role of the user in waste management processes, the importance of economic incentives to increase the usefulness of the technology and the role of AI in waste management transformation processes (e.g. glass waste).

Originality/value

The present study enhances the circular economy model (transformation, distribution and recovery), uncovering AI’s role in waste management. Finally, we inspire managers with algorithms used for data-driven decisions.

Details

Management Decision, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0025-1747

Keywords

Article
Publication date: 2 May 2024

Tudor George Alexandru, Diana Popescu, Stochioiu Constantin and Florin Baciu

The purpose of this study is to investigate the thermoforming process of 3D-printed parts made from polylactic acid (PLA) and explore its application in producing wrist-hand…

Abstract

Purpose

The purpose of this study is to investigate the thermoforming process of 3D-printed parts made from polylactic acid (PLA) and explore its application in producing wrist-hand orthoses. These orthoses were 3D printed flat, heated and molded to fit the patient’s hand. The advantages of such an approach include reduced production time and cost.

Design/methodology/approach

The study used both experimental and numerical methods to analyze the thermoforming process of PLA parts. Thermal and mechanical characteristics were determined at different temperatures and infill densities. An equivalent material model that considers infill within a print is proposed. Its practical use was proven using a coupled finite-element analysis model. The simulation strategy enabled a comparative analysis of the thermoforming behavior of orthoses with two designs by considering the combined impact of natural convection cooling and imposed structural loads.

Findings

The experimental results indicated that at 27°C and 35°C, the tensile specimens exhibited brittle failure irrespective of the infill density, whereas ductile behavior was observed at 45°C, 50°C and 55°C. The thermal conductivity of the material was found to be linearly related to the temperature of the specimen. Orthoses with circular open pockets required more time to complete the thermoforming process than those with hexagonal pockets. Hexagonal cutouts have a lower peak stress owing to the reduced reaction forces, resulting in a smoother thermoforming process.

Originality/value

This study contributes to the existing literature by specifically focusing on the thermoforming process of 3D-printed parts made from PLA. Experimental tests were conducted to gather thermal and mechanical data on specimens with two infill densities, and a finite-element model was developed to address the thermoforming process. These findings were applied to a comparative analysis of 3D-printed thermoformed wrist-hand orthoses that included open pockets with different designs, demonstrating the practical implications of this study’s outcomes.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 167