Search results

1 – 10 of over 6000
Article
Publication date: 6 March 2017

Shuixian Hu, Ruomei Wang and Fan Zhou

The purpose of this paper is to present an efficient algorithm for multi-layer garment fitting simulation based on the geometric method to solve the low time cost problem during…

Abstract

Purpose

The purpose of this paper is to present an efficient algorithm for multi-layer garment fitting simulation based on the geometric method to solve the low time cost problem during penetration detection and processing. This is more practical to design a CAD system to preview the multi-layer garment fitting effect in daily life.

Design/methodology/approach

The construction of a multi-layer garment based on existing 3D garments is a suitable method because this method is similar to the daily method of multi-layer dressing. The major problem is the penetration phenomenon between different garments because these 3D garment’s geometric shapes are constructed in different situations. In this paper, an efficient algorithm of multi-layer garment simulation is reported. A face-face intersection detection algorithm is designed to detect the penetration region between multi-layer garments fast and a geometric penetration processing algorithm is presented to solve the penetration phenomenon during multi-layer garment simulation.

Findings

This method can quickly detect the penetration between faces, and then deal with the penetration for multi-layer garment construction. Experimental results show that this method can not only remove the penetration but basically maintain the trend of wrinkles efficiently. At the same time, the garments used in the experiment have almost more than 5,800 faces, but the resolving time is under five seconds.

Originality/value

The main originalities of the multi-layer garment virtual fitting algorithm based on the geometric method are highly efficient both in terms of time cost and fitting effect. Based on this method, the technology of multi-layer garment virtual fitting can be used to design a novel CAD system to preview the multi-layer garment fitting effect in real time. This is a pressing requirement of virtual garment applications.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 16 September 2020

Tao Zhang, Yuntao Song, Huapeng Wu and Qi Wang

Every geometric model corresponding to a unique feature whose errors of parameters uncorrelated, so the linearization technique can be successfully applied. The solution of a…

Abstract

Purpose

Every geometric model corresponding to a unique feature whose errors of parameters uncorrelated, so the linearization technique can be successfully applied. The solution of a linear least square problem can be applied straightforwardly. This method has advantages especially in calibrate the redundant robot because it’s relatively small. The parameters of kinematics are unique and determined by this algorithm.

Design/methodology/approach

In this paper, a geometric identification method has been studied to estimate the parameters in the Denavit–Hartenberg (DH) model of the robot. Through studying the robot’s geometric features, specific trajectories are designed for calibrating the DH parameters. On the basis of these geometric features, several fitting methods have been deduced so that the important geometric parameters of robots, such as the actual rotation centers and rotate axes, can be found.

Findings

By measuring the corresponding motion trajectory at the end-effector, the trajectory feature can be identified by using curve fitting methods, and the trajectory feature will reflect back to the actual value of the DH parameters.

Originality/value

This method is especially suitable for rigid serial-link robots especially for redundant robots because of its specific calibration trajectory and geometric features. Besides, this method uses geometric features to calibrate the robot which is relatively small especially for the redundant robot comparing to the numerical algorithm.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 5 September 2020

Farhad Shamsfakhr and Bahram Sadeghi Bigham

In this paper, an attempt has been made to develop an algorithm equipped with geometric pattern registration techniques to perform exact, robust and fast robot localization purely…

Abstract

Purpose

In this paper, an attempt has been made to develop an algorithm equipped with geometric pattern registration techniques to perform exact, robust and fast robot localization purely based on laser range data.

Design/methodology/approach

The expected pose of the robot on a pre-calculated map is in the form of simulated sensor readings. To obtain the exact pose of the robot, segmentation of both real laser range and simulated laser range readings is performed. Critical points on two scan sets are extracted from the segmented range data and thereby the pose difference is computed by matching similar parts of the scans and calculating the relative translation.

Findings

In contrast to other self-localization algorithms based on particle filters and scan matching, the proposed method, in common positioning scenarios, provides a linear cost with respect to the number of sensor particles, making it applicable to real-time resource-limited embedded robots. The proposed method is able to obtain a sensibly accurate estimate of the relative pose of the robot even in non-occluded but partially visible segments conditions.

Originality/value

A comparison of state-of-the-art localization techniques has shown that geometrical scan registration algorithm is superior to the other localization methods based on scan matching in accuracy, processing speed and robustness to large positioning errors. Effectiveness of the proposed method has been demonstrated by conducting a series of real-world experiments.

Details

Assembly Automation, vol. 40 no. 6
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 17 November 2023

Behrooz Ariannezhad, Shahram Shahrooi and Mohammad Shishesaz

1) The OE-MLPG penalty meshfree method is developed to solve cracked structure.(2) Smartening the numerical meshfree method by combining the particle swarm optimization (PSO…

Abstract

Purpose

1) The OE-MLPG penalty meshfree method is developed to solve cracked structure.(2) Smartening the numerical meshfree method by combining the particle swarm optimization (PSO) optimization algorithms and Voronoi computational geometric algorithm. (3). Selection of base functions, finding optimal penalty factor and distribution of appropriate nodal points to the accuracy of calculation in the meshless local Petrov–Galekrin (MLPG) meshless method.

Design/methodology/approach

Using appropriate shape functions and distribution of nodal points in local domains and sub-domains and choosing an approximation or interpolation method has an effective role in the application of meshless methods for the analysis of computational fracture mechanics problems, especially problems with geometric discontinuity and cracks. In this research, computational geometry technique, based on the Voronoi diagram (VD) and Delaunay triangulation and PSO algorithm, are used to distribute nodal points in the sub-domain of analysis (crack line and around it on the crack plane).

Findings

By doing this process, the problems caused by too closeness of nodal points in computationally sensitive areas that exist in general methods of nodal point distribution are also solved. Comparing the effect of the number of sentences of basic functions and their order in the definition of shape functions, performing the mono-objective PSO algorithm to find the penalty factor, the coefficient, convergence, arrangement of nodal points during the three stages of VD implementation and the accuracy of the answers found indicates, the efficiency of V-E-MLPG method with Ns = 7 and ß = 0.0037–0.0075 to estimation of 3D-stress intensity factors (3D-SIFs) in computational fracture mechanics.

Originality/value

The present manuscript is a continuation of the studies (Ref. [33]) carried out by the authors, about; feasibility assessment, improvement and solution of challenges, introduction of more capacities and capabilities of the numerical MLPG method have been used. In order to validate the modeling and accuracy of calculations, the results have been compared with the findings of reference article [34] and [35].

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 March 2022

Shifa Sulaiman and A.P. Sudheer

Most of the conventional humanoid modeling approaches are not successful in coupling different branches of the tree-type humanoid robot. In this paper, a tree-type upper body…

Abstract

Purpose

Most of the conventional humanoid modeling approaches are not successful in coupling different branches of the tree-type humanoid robot. In this paper, a tree-type upper body humanoid robot with mobile base is modeled. The main purpose of this work is to model a non holonomic mobile platform and to develop a hybrid algorithm for avoiding dynamic obstacles. Decoupled Natural Orthogonal Complement methodology effectively combines different branches of the humanoid body during dynamic analysis. Collision avoidance also plays an important role along with modeling methods for successful operation of the upper body wheeled humanoid robot during real-time operations. The majority of path planning algorithms is facing problems in avoiding dynamic obstacles during real-time operations. Hence, a multi-fusion approach using a hybrid algorithm for avoiding dynamic obstacles in real time is introduced.

Design/methodology/approach

The kinematic and dynamic modeling of a humanoid robot with mobile platform is done using screw theory approach and Newton–Euler formulations, respectively. Dynamic obstacle avoidance using a novel hybrid algorithm is carried out and implemented in real time. D star lite and a geometric-based hybrid algorithms are combined to generate the optimized path for avoiding the dynamic obstacles. A weighting factor is added to the D star lite variant to optimize the basic version of D star lite algorithm. Lazy probabilistic road map (PRM) technique is used for creating nodes in configuration space. The dynamic obstacle avoidance is experimentally validated to achieve the optimum path.

Findings

The path obtained using the hybrid algorithm for avoiding dynamic obstacles is optimum. Path length, computational time, number of expanded nodes are analysed for determining the optimality of the path. The weighting function introduced along with the D star lite algorithm decreases computational time by decreasing the number of expanding nodes during path generation. Lazy evaluation technique followed in Lazy PRM algorithm reduces computational time for generating nodes and local paths.

Originality/value

Modeling of a tree-type humanoid robot along with the mobile platform is combinedly developed for the determination of the kinematic and dynamic equations. This paper also aims to develop a novel hybrid algorithm for avoiding collision with dynamic obstacles with minimal computational effort in real-time operations.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 28 June 2023

Lin Yang, Qiming Li and Wei Pan

This research aims to argue that manual geometric modeling is blocking the building information modeling (BIM) promotion to small-size companies. Therefore, it is necessary to…

Abstract

Purpose

This research aims to argue that manual geometric modeling is blocking the building information modeling (BIM) promotion to small-size companies. Therefore, it is necessary to study a manner of automated modeling to reduce the dependence of BIM implementation on manpower. This paper aims to make a study into such a system to propose both its theory and prototype.

Design/methodology/approach

This research took a prototyping as the methodology, which consists of three steps: (1) proposing a theoretical framework supporting automated geometric modeling process; (2) developing a prototype system based on the framework; (3) conducting a testing for the prototype system on its performance.

Findings

Previous researches into automated geometric modeling only respectively focused on a specific procedure for a particular engineering domain. No general model was abstracted to support generic geometric modeling. This paper, taking higher level of abstraction, proposed such a model that can describe general geometric modeling process to serve generic automated geometric modeling systems.

Research limitations/implications

This paper focused on only geometric modeling, skipping non-geometric information of BIM. A complete BIM model consists of geometric and non-geometric data. Therefore, the method of combination of them is on the research agenda.

Originality/value

The model proposed by this paper provide a mechanism to translate engineering geometric objects into textual representations, being able to act as the kernel of generic automated geometric modeling systems, which are expected to boost BIM promotion in industry.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 31 July 2020

Jingyu Pei, Xiaoping Wang, Leen Zhang, Yu Zhou and Jinyuan Qian

This paper aims to provide a series of new methods for projecting a three-dimensional (3D) object onto a free-form surface. The projection algorithms presented can be divided into…

Abstract

Purpose

This paper aims to provide a series of new methods for projecting a three-dimensional (3D) object onto a free-form surface. The projection algorithms presented can be divided into three types, namely, orthogonal, perspective and parallel projection.

Design/methodology/approach

For parametric surfaces, the computing strategy of the algorithm is to obtain an approximate solution by using a geometric algorithm, then improve the accuracy of the approximate solution using the Newton–Raphson iteration. For perspective projection and parallel projection on an implicit surface, the strategy replaces Newton–Raphson iteration by multi-segment tracing. The implementation takes two mesh objects as an example of calculating an image projected onto parametric and implicit surfaces. Moreover, a comparison is made for orthogonal projections with Hu’s and Liu’s methods.

Findings

The results show that the new method can solve the 3D objects projection problem in an effective manner. For orthogonal projection, the time taken by the new method is substantially less than that required for Hu’s method. The new method is also more accurate and faster than Liu’s approach, particularly when the 3D object has a large number of points.

Originality/value

The algorithms presented in this paper can be applied in many industrial applications such as computer aided design, computer graphics and computer vision.

Details

Engineering Computations, vol. 38 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 September 2015

M. V. A. Raju Bahubalendruni, Bibhuti Bhusan Biswal, Manish Kumar and Radharani Nayak

The purpose of this paper is to find out the significant influence of assembly predicate consideration on optimal assembly sequence generation (ASG) in terms of search space…

Abstract

Purpose

The purpose of this paper is to find out the significant influence of assembly predicate consideration on optimal assembly sequence generation (ASG) in terms of search space, computational time and possibility of resulting practically not feasible assembly sequences. An appropriate assembly sequence results in minimal lead time and low cost of assembly. ASG is a complex combinatorial optimisation problem which deals with several assembly predicates to result an optimal assembly sequence. The consideration of each assembly predicate highly influences the search space and thereby computational time to achieve valid assembly sequence. Often, the ignoring an assembly predicate leads to inappropriate assembly sequence, which may not be physically possible, sometimes predicate assumption drastic ally raises the search space with high computational time.

Design/methodology/approach

The influence of assuming and considering different assembly predicates on optimal assembly sequence generation have been clearly illustrated with examples using part concatenation method.

Findings

The presence of physical attachments and type of assembly liaisons decide the consideration of assembly predicate to reduce the complexity of the problem formulation and overall computational time.

Originality/value

Most of the times, assembly predicates are ignored to reduce the computational time without considering their impact on the assembly sequence problem irrespective of assembly attributes. The current research proposes direction towards predicate considerations based on the assembly configurations for effective and efficient ASG.

Article
Publication date: 6 September 2021

Duy-Cuong Nguyen, The-Quan Nguyen, Ruoyu Jin, Chi-Ho Jeon and Chang-Su Shim

The purpose of this study is to develop a building information modelling (BIM)-based mixed reality (MR) application to enhance and facilitate the process of managing bridge…

1480

Abstract

Purpose

The purpose of this study is to develop a building information modelling (BIM)-based mixed reality (MR) application to enhance and facilitate the process of managing bridge inspection and maintenance works remotely from office. It aims to address the ineffective decision-making process on maintenance tasks from the conventional method which relies on documents and 2D drawings on visual inspection. This study targets two key issues: creating a BIM-based model for bridge inspection and maintenance; and developing this model in a MR platform based on Microsoft Hololens.

Design/methodology/approach

Literature review is conducted to determine the limitation of MR technology in the construction industry and identify the gaps of integration of BIM and MR for bridge inspection works. A new framework for a greater adoption of integrated BIM and Hololens is proposed. It consists of a bridge information model for inspection and a newly-developed Hololens application named “HoloBridge”. This application contains the functional modules that allow users to check and update the progress of inspection and maintenance. The application has been implemented for an existing bridge in South Korea as the case study.

Findings

The results from pilot implementation show that the inspection information management can be enhanced because the inspection database can be systematically captured, stored and managed through BIM-based models. The inspection information in MR environment has been improved in interpretation, visualization and visual interpretation of 3D models because of intuitively interactive in real-time simulation.

Originality/value

The proposed framework through “HoloBridge” application explores the potential of integrating BIM and MR technology by using Hololens. It provides new possibilities for remote inspection of bridge conditions.

Article
Publication date: 28 September 2007

Elhadi Shakshuki, Andreas Kerren and Tomasz Müldner

The purpose of this paper is to present the development of a system called Structured Hypermedia Algorithm Explanation (SHALEX), as a remedy for the limitations existing within…

Abstract

Purpose

The purpose of this paper is to present the development of a system called Structured Hypermedia Algorithm Explanation (SHALEX), as a remedy for the limitations existing within the current traditional algorithm animation (AA) systems. SHALEX provides several novel features, such as use of invariants, reflection of the high‐level structure of an algorithm rather than low‐level steps, and support for programming the algorithm in any procedural or object‐oriented programming language.

Design/methodology/approach

By defining the structure of an algorithm as a directed graph of abstractions, algorithms may be studied top‐down, bottom‐up, or using a mix of the two. In addition, SHALEX includes a learner model to provide spatial links, and to support evaluations and adaptations.

Findings

Evaluations of traditional AA systems designed to teach algorithms in higher education or in professional training show that such systems have not achieved many expectations of their developers. One reason for this failure is the lack of stimulating learning environments which support the learning process by providing features such as multiple levels of abstraction, support for hypermedia, and learner‐adapted visualizations. SHALEX supports these environments, and in addition provides persistent storage that can be used to analyze students' performance. In particular, this storage can be used to represent a student model that supports adaptive system behavior.

Research limitations/implications

SHALEX is being implemented and tested by the authors and a group of students. The tests performed so far have shown that SHALEX is a very useful tool. In the future additional quantitative evaluation is planned to compare SHALEX with other AA systems and/or the concept keyboard approach.

Practical implications

SHALEX has been implemented as a web‐based application using the client‐server architecture. Therefore students can use SHALEX to learn algorithms both through distance education and in the classroom setting.

Originality/value

This paper presents a novel algorithm explanation system for users who wish to learn algorithms.

Details

International Journal of Web Information Systems, vol. 3 no. 3
Type: Research Article
ISSN: 1744-0084

Keywords

1 – 10 of over 6000