Search results

1 – 10 of 568
Content available
Article
Publication date: 1 February 1999

Wu Chen

75

Abstract

Details

Kybernetes, vol. 28 no. 1
Type: Research Article
ISSN: 0368-492X

Keywords

Content available
Article
Publication date: 1 September 2003

177

Abstract

Details

Sensor Review, vol. 23 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 8 March 2022

Armin Mahmoodi, Milad Jasemi Zergani, Leila Hashemi and Richard Millar

The purpose of this paper is to maximize the total demand covered by the established additive manufacturing and distribution centers and maximize the total literal weight assigned…

1195

Abstract

Purpose

The purpose of this paper is to maximize the total demand covered by the established additive manufacturing and distribution centers and maximize the total literal weight assigned to the drones.

Design/methodology/approach

Disaster management or humanitarian supply chains (HSCs) differ from commercial supply chains in the fact that the aim of HSCs is to minimize the response time to a disaster as compared to the profit maximization goal of commercial supply chains. In this paper, the authors develop a relief chain structure that accommodates emerging technologies in humanitarian logistics into the two phases of disaster management – the preparedness stage and the response stage.

Findings

Solving the model by the genetic and the cuckoo optimization algorithm (COA) and comparing the results with the ones obtained by The General Algebraic Modeling System (GAMS) clear that genetic algorithm overcomes other options as it has led to objective functions that are 1.6% and 24.1% better comparing to GAMS and COA, respectively.

Originality/value

Finally, the presented model has been solved with three methods including one exact method and two metaheuristic methods. Results of implementation show that Non-dominated sorting genetic algorithm II (NSGA-II) has better performance in finding the optimal solutions.

Open Access
Article
Publication date: 19 November 2021

Łukasz Knypiński

The purpose of this paper is to execute the efficiency analysis of the selected metaheuristic algorithms (MAs) based on the investigation of analytical functions and investigation…

1317

Abstract

Purpose

The purpose of this paper is to execute the efficiency analysis of the selected metaheuristic algorithms (MAs) based on the investigation of analytical functions and investigation optimization processes for permanent magnet motor.

Design/methodology/approach

A comparative performance analysis was conducted for selected MAs. Optimization calculations were performed for as follows: genetic algorithm (GA), particle swarm optimization algorithm (PSO), bat algorithm, cuckoo search algorithm (CS) and only best individual algorithm (OBI). All of the optimization algorithms were developed as computer scripts. Next, all optimization procedures were applied to search the optimal of the line-start permanent magnet synchronous by the use of the multi-objective objective function.

Findings

The research results show, that the best statistical efficiency (mean objective function and standard deviation [SD]) is obtained for PSO and CS algorithms. While the best results for several runs are obtained for PSO and GA. The type of the optimization algorithm should be selected taking into account the duration of the single optimization process. In the case of time-consuming processes, algorithms with low SD should be used.

Originality/value

The new proposed simple nondeterministic algorithm can be also applied for simple optimization calculations. On the basis of the presented simulation results, it is possible to determine the quality of the compared MAs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 21 November 2023

Yao Wang

Facing the diverse needs of large-scale customers, based on available railway service resources and service capabilities, this paper aims to research the design method of railway…

Abstract

Purpose

Facing the diverse needs of large-scale customers, based on available railway service resources and service capabilities, this paper aims to research the design method of railway freight service portfolio, select optimal service solutions and provide customers with comprehensive and customized freight services.

Design/methodology/approach

Based on the characteristics of railway freight services throughout the entire process, the service system is decomposed into independent units of service functions, and a railway freight service combination model is constructed with the goal of minimizing response time, service cost and service time. A model solving algorithm based on adaptive genetic algorithm is proposed.

Findings

Using the computational model, an empirical analysis was conducted on the entire process freight service plan for starch sold from Xi'an to Chengdu as an example. The results showed that the proposed optimization model and algorithm can effectively guide the design of freight plans and provide technical support for real-time response to customers' diversified entire process freight service needs.

Originality/value

With the continuous optimization and upgrading of railway freight source structure, customer demands are becoming increasingly diverse and personalized. Studying and designing a reasonable railway freight service plan throughout the entire process is of great significance for timely response to customer needs, improving service efficiency and reducing design costs.

Details

Railway Sciences, vol. 2 no. 4
Type: Research Article
ISSN: 2755-0907

Keywords

Content available
Article
Publication date: 1 February 2021

Ali Cheaitou, Sadeque Hamdan and Rim Larbi

This paper aims to examine containership routing and speed optimization for maritime liner services. It focuses on a realistic case in which the transport demand, and consequently…

1137

Abstract

Purpose

This paper aims to examine containership routing and speed optimization for maritime liner services. It focuses on a realistic case in which the transport demand, and consequently the collected revenue from the visited ports depend on the sailing speed.

Design/methodology/approach

The authors present an integer non-linear programming model for the containership routing and fleet sizing problem, in which the sailing speed of every leg, the ports to be included in the service and their sequence are optimized based on the net line's profit. The authors present a heuristic approach that is based on speed discretization and a genetic algorithm to solve the problem for large size instances. They present an application on a line provided by COSCO in 2017 between Asia and Europe.

Findings

The numerical results show that the proposed heuristic approach provides good quality solutions after a reasonable computation time. In addition, the demand sensitivity has a great impact on the selected route and therefore the profit function. Moreover, the more the demand is sensitive to the sailing speed, the higher the sailing speed value.

Research limitations/implications

The vessel carrying capacity is not considered in an explicit way.

Originality/value

This paper focuses on an important aspect in liner shipping, i.e. demand sensitivity to sailing speed. It brings a novel approach that is important in a context in which sailing speed strategies and market volatility are to be considered together in network design. This perspective has not been addressed previously.

Details

Maritime Business Review, vol. 6 no. 3
Type: Research Article
ISSN: 2397-3757

Keywords

Open Access
Article
Publication date: 17 November 2021

Leila Hashemi, Armin Mahmoodi, Milad Jasemi, Richard C. Millar and Jeremy Laliberté

This study aims to investigate a locating-routing-allocating problems and the supply chain, including factories distributor candidate locations and retailers. The purpose of this…

1322

Abstract

Purpose

This study aims to investigate a locating-routing-allocating problems and the supply chain, including factories distributor candidate locations and retailers. The purpose of this paper is to minimize system costs and delivery time to retailers so that routing is done and the location of the distributors is located.

Design/methodology/approach

The problem gets closer to reality by adding some special conditions and constraints. Retail service start times have hard and soft time windows, and each customer has a demand for simultaneous delivery and pickups. System costs include the cost of transportation, non-compliance with the soft time window, construction of a distributor, purchase or rental of a vehicle and production costs. The conceptual model of the problem is first defined and modeled and then solved in small dimensions by general algebraic modeling system (GAMS) software and non-dominated sorting genetic algorithm II (NSGAII) and multiple objective particle swarm optimization (MOPSO) algorithms.

Findings

According to the solution of the mathematical model, the average error of the two proposed algorithms in comparison with the exact solution is less than 0.7%. Also, the algorithms’ performance in terms of deviation from the GAMS exact solution, is quite acceptable and for the largest problem (N = 100) is 0.4%. Accordingly, it is concluded that NSGAII is superior to MOSPSO.

Research limitations/implications

In this study, since the model is bi-objective, the priorities of decision makers in choosing the optimal solution have not been considered and each of the objective functions has been given equal importance according to the weighting methods. Also, the model has not been compared and analyzed in deterministic and robust modes. This is because all variables, except the one that represents the uncertainty of traffic modes, are deterministic and the random nature of the demand in each graph is not considered.

Practical implications

The results of the proposed model are valuable for any group of decision makers who care optimizing the production pattern at any level. The use of a heterogeneous fleet of delivery vehicles and application of stochastic optimization methods in defining the time windows, show how effective the distribution networks are in reducing operating costs.

Originality/value

This study fills the gaps in the relationship between location and routing decisions in a practical way, considering the real constraints of a distribution network, based on a multi-objective model in a three-echelon supply chain. The model is able to optimize the uncertainty in the performance of vehicles to select the refueling strategy or different traffic situations and bring it closer to the state of certainty. Moreover, two modified algorithms of NSGA-II and multiple objective particle swarm optimization (MOPSO) are provided to solve the model while the results are compared with the exact general algebraic modeling system (GAMS) method for the small- and medium-sized problems.

Details

Smart and Resilient Transportation, vol. 3 no. 3
Type: Research Article
ISSN: 2632-0487

Keywords

Open Access
Article
Publication date: 13 November 2020

Ashish Dwivedi, Ajay Jha, Dhirendra Prajapati, Nenavath Sreenu and Saurabh Pratap

Due to unceasing declination in environment, sustainable agro-food supply chains have become a topic of concern to business, government organizations and customers. The purpose of…

2409

Abstract

Purpose

Due to unceasing declination in environment, sustainable agro-food supply chains have become a topic of concern to business, government organizations and customers. The purpose of this study is to examine a problem associated with sustainable network design in context of Indian agro-food grain supply chain.

Design/methodology/approach

A mixed integer nonlinear programming (MINLP) model is suggested to apprehend the major complications related with two-echelon food grain supply chain along with sustainability aspects (carbon emissions). Genetic algorithm (GA) and quantum-based genetic algorithm (Q-GA), two meta-heuristic algorithms and LINGO 18 (traditional approach) are employed to establish the vehicle allocation and selection of orders set.

Findings

The model minimizes the total transportation cost and carbon emission tax in gathering food grains from farmers to the hubs and later to the selected demand points (warehouses). The simulated data are adopted to test and validate the suggested model. The computational experiments concede that the performance of LINGO is superior than meta-heuristic algorithms (GA and Q-GA) in terms of solution obtained, but there is trade-off with respect to computational time.

Research limitations/implications

In literature, inadequate study has been perceived on defining environmental sustainable issues connected with agro-food supply chain from farmer to final distribution centers. A MINLP model has been formulated as practical scenario for central part of India that captures all the major complexities to make the system more efficient. This study is regulated to agro-food Indian industries.

Originality/value

The suggested network design problem is an innovative approach to design distribution systems from farmers to the hubs and later to the selected warehouses. This study considerably assists the organizations to design their distribution network more efficiently.

Details

Modern Supply Chain Research and Applications, vol. 2 no. 3
Type: Research Article
ISSN: 2631-3871

Keywords

Content available

Abstract

Details

Assembly Automation, vol. 26 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Open Access
Article
Publication date: 30 June 2021

Cemal Aktürk

Improving business processes provides companies with advantages in terms of efficiency and profitability, as well as competitiveness against other companies in the market…

2995

Abstract

Improving business processes provides companies with advantages in terms of efficiency and profitability, as well as competitiveness against other companies in the market. Companies that integrate business processes with enterprise resource planning (ERP) systems into digital platforms also have the opportunity to strengthen their weaknesses by recognizing disruptions and bottlenecks in inefficient business processes thanks to this digital transformation. Descriptive and bibliometric analyses were performed in this study for a systematic evaluation of studies on artificial intelligence (AI) in the ERP literature. The studies in which the keywords determined from the AI literature were firstly used together with ERP were investigated from the Scopus database. 837 publications meeting the search criteria were reached and a descriptive analysis of these publications was presented. Then, bibliometric analysis was performed using common author, common citation, and common keyword analysis methods for 296 publications in the article type. Tsinghua University and Obuda University have the most publications according to the results. The most commonly used AI keywords in the ERP studies were “genetic algorithm”, “fuzzy logic”, and “machine learning”. This study aims to guide future studies by providing a systematic and new perspective to researchers and experts working on ERP-AI.

Details

Journal of International Logistics and Trade, vol. 19 no. 2
Type: Research Article
ISSN: 1738-2122

Keywords

1 – 10 of 568