Search results

1 – 10 of 38
Article
Publication date: 16 September 2024

Weiwei Yue, Yuwei Cao, Shuqi Xie, Kang Ning Cheng, Yue Ding, Cong Liu, Yan Jing Ding, Xiaofeng Zhu, Huanqing Liu and Muhammad Shafi

This study aims to improve detection efficiency of fluorescence biosensor or a graphene field-effect transistor biosensor. Graphene field-effect transistor biosensing and…

Abstract

Purpose

This study aims to improve detection efficiency of fluorescence biosensor or a graphene field-effect transistor biosensor. Graphene field-effect transistor biosensing and fluorescent biosensing were integrated and combined with magnetic nanoparticles to construct a multi-sensor integrated microfluidic biochip for detecting single-stranded DNA. Multi-sensor integrated biochip demonstrated higher detection reliability for a single target and could simultaneously detect different targets.

Design/methodology/approach

In this study, the authors integrated graphene field-effect transistor biosensing and fluorescent biosensing, combined with magnetic nanoparticles, to fabricate a multi-sensor integrated microfluidic biochip for the detection of single-stranded deoxyribonucleic acid (DNA). Graphene films synthesized through chemical vapor deposition were transferred onto a glass substrate featuring two indium tin oxide electrodes, thus establishing conductive channels for the graphene field-effect transistor. Using π-π stacking, 1-pyrenebutanoic acid succinimidyl ester was immobilized onto the graphene film to serve as a medium for anchoring the probe aptamer. The fluorophore-labeled target DNA subsequently underwent hybridization with the probe aptamer, thereby forming a fluorescence detection channel.

Findings

This paper presents a novel approach using three channels of light, electricity and magnetism for the detection of single-stranded DNA, accompanied by the design of a microfluidic detection platform integrating biosensor chips. Remarkably, the detection limit achieved is 10 pm, with an impressively low relative standard deviation of 1.007%.

Originality/value

By detecting target DNA, the photo-electro-magnetic multi-sensor graphene field-effect transistor biosensor not only enhances the reliability and efficiency of detection but also exhibits additional advantages such as compact size, affordability, portability and straightforward automation. Real-time display of detection outcomes on the host facilitates a deeper comprehension of biochemical reaction dynamics. Moreover, besides detecting the same target, the sensor can also identify diverse targets, primarily leveraging the penetrative and noninvasive nature of light.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 July 2024

Anindya Bose, Sarthak Sengupta and Sayori Biswas

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering…

Abstract

Purpose

This study aims to provide a microfluidic blood glucose sensing platform based on integrated interdigitated electrode arrays (IDEAs) on a flexible quartz glass substrate, adhering closely to pertinent electrochemical characterizations.

Design/methodology/approach

Sensors are the key elements of the modern electronics era through which all the possible physical quantities can be detected and converted into their equivalent electrical form and processed further. But to make the sensing environment better, various types of innovative architectures are being developed nowadays and among them interdigitated electrodes are quite remarkable in terms of their sensing capability. They are a well-qualified candidate in the field of gas sensing and biosensing, but even their sensitivities are getting saturated due to their physical dimensions. Most of the thin film IDEAs fabricated by conventional optical lithographic techniques do not possess a high surface-to-volume ratio to detect the target specified and that reduces their sensitivity factor. In this context, a classic conductive carbon-based highly sensitive three dimensional (3D) IDEA-enabled biosensing system has been conceived on a transparent and flexible substrate to measure the amount of glucose concentration present in human blood. 3D IDEA possesses a way better capacitive sensing behavior compared to conventional thin film microcapacitive electrodes. To transmit the target biological analyte sample property for the detection purpose to the interdigitated array-based sensing platform, the design of a microfluidic channel is initiated on the same substrate. The complex 3D Inter Digital array structure improves the overall capacitance of the entire sensing platform and the reactive surface area as well. The manufactured integrated device displays a decent value of sensitivity in the order of 5.6 µA mM−1 cm−2.

Findings

Development of a low-cost array-based integrated and highly flexible microfluidic biochip to extract the quantity of glucose present in human blood.

Originality/value

Potential future research opportunities in the realm of integrated miniaturized, low-cost smart biosensing systems may arise from this study.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 18 September 2024

David Díaz Jiménez, José Luis López Ruiz, Jesús González Lama and Ángeles Verdejo Espinosa

The main objective of the study is to address the lack of sustainability assessments of smart connected health systems in the academic literature by presenting an assessment model…

Abstract

Purpose

The main objective of the study is to address the lack of sustainability assessments of smart connected health systems in the academic literature by presenting an assessment model to determine the alignment of these systems with the 17 Sustainable Development Goals (SDGs) proposed in the 2030 Agenda.

Design/methodology/approach

An evaluation model based on decision analysis is proposed that includes three phases: alignment framework, information gathering and assessment. This model measures the alignment of the connected health system with each of the 17 SDGs, identifying the goals and criteria associated with each SDG that the system achieves to satisfy.

Findings

The analysis reveals that the system has achieved more than 24% of the targets among the 17 SDGs. In addition, it identifies four sustainability challenges that the system potentially addresses in relation to the SDGs, providing valuable guidance for researchers and practitioners interested in sustainable health technology development.

Practical implications

The study's results have significant implications for policymakers and stakeholders in the health and technology sectors.

Originality/value

The originality of this study lies in its comprehensive approach to assessing the sustainability of connected health systems in the context of the SDGs, filling an important gap in the existing literature.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 28 June 2024

Ebere Donatus Okonta and Farzad Rahimian

The purpose of this study is to investigate and analyse the potential of existing buildings in the UK to contribute to the net-zero emissions target. Specifically, it aims to…

Abstract

Purpose

The purpose of this study is to investigate and analyse the potential of existing buildings in the UK to contribute to the net-zero emissions target. Specifically, it aims to address the significant emissions from building fabrics which pose a threat to achieving these targets if not properly addressed.

Design/methodology/approach

The study, based on a literature review and ten (10) case studies, explored five investigative approaches for evaluating building fabric: thermal imaging, in situ U-value testing, airtightness testing, energy assessment and condensation risk analysis. Cross-case analysis was used to evaluate both case studies using each approach. These methodologies were pivotal in assessing buildings’ existing condition and energy consumption and contributing to the UK’s net-zero ambitions.

Findings

Findings reveal that incorporating the earlier approaches into the building fabric showed great benefits. Significant temperature regulation issues were identified, energy consumption decreased by 15% after improvements, poor insulation and artistry quality affected the U-values of buildings. Implementing retrofits such as solar panels, air vents, insulation, heat recovery and air-sourced heat pumps significantly improved thermal performance while reducing energy consumption. Pulse technology proved effective in measuring airtightness, even in extremely airtight houses, and high airflow and moisture management were essential in preserving historic building fabric.

Originality/value

The research stresses the need to understand investigative approaches’ strengths, limitations and synergies for cost-effective energy performance strategies. It emphasizes the urgency of eliminating carbon dioxide (CO2) and greenhouse gas emissions to combat global warming and meet the 1.5° C threshold.

Details

Urbanization, Sustainability and Society, vol. 1 no. 1
Type: Research Article
ISSN: 2976-8993

Keywords

Article
Publication date: 19 July 2024

Xinran Yang, Junhui Du, Hongshuo Chen, Chuanjin Cui, Haibin Liu and Xuechao Zhang

Field-effect transistor (FET) has excellent electronic properties and inherent signal amplification, and with the development of nanomaterials technology, FET biosensors with…

Abstract

Purpose

Field-effect transistor (FET) has excellent electronic properties and inherent signal amplification, and with the development of nanomaterials technology, FET biosensors with nanomaterials as channels play an important role in the field of heavy metal ion detection. This paper aims to review the research progress of silicon nanowire, graphene and carbon nanotube field-effect tube biosensors for heavy metal ion detection, so as to provide technical support and practical experience for the application and promotion of FET.

Design/methodology/approach

The article introduces the structure and principle of three kinds of FET with three kinds of nanomaterials, namely, silicon nanowires, graphene and carbon nanotubes, as the channels, and lists examples of the detection of common heavy metal ions by the three kinds of FET sensors in recent years. The article focuses on the advantages and disadvantages of the three sensors, puts forward measures to improve the performance of the FET and looks forward to its future development direction.

Findings

Compared with conventional instrumental analytical methods, FETs prepared using nanomaterials as channels have the advantages of fast response speed, high sensitivity and good selectivity, among which the diversified processing methods of graphene, the multi-heavy metal ions detection of silicon nanowires and the very low detection limit and wider detection range of carbon nanotubes have made them one of the most promising detection tools in the field of heavy metal ions detection. Of course, through in-depth analysis, this type of sensor has certain limitations, such as high cost and strict process requirements, which are yet to be solved.

Originality/value

This paper elaborates on the detection principle and classification of field-effect tube, investigates and researches the application status of three kinds of FET biosensors in the detection of common heavy metal ions. By comparing the advantages and disadvantages of each of the three sensors in practical applications, the paper focuses on the feasibility of improvement measures, looks forward to the development trend in the field of heavy metal detection and ultimately promotes the application of field-effect tube development technology to continue to progress, so that its performance continues to improve and the application field is constantly expanding.

Details

Sensor Review, vol. 44 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 24 September 2024

Chenyang Sun and Mohammad Khishe

The purpose of the study is to address concerns regarding the subjectivity and imprecision of decision-making in table tennis refereeing by developing and enhancing a sensor node…

Abstract

Purpose

The purpose of the study is to address concerns regarding the subjectivity and imprecision of decision-making in table tennis refereeing by developing and enhancing a sensor node system. This system is designed to accurately detect the points on the table tennis table where balls collide. The study introduces the twined-reinforcement chimp optimization (TRCO) framework, which combines two novel approaches to optimize the distribution of sensor nodes. The main goal is to reduce the number of sensor units required while maintaining high accuracy in determining the locations of ball collisions, with error margins significantly below the critical 3.5 mm cutoff. Through complex optimization procedures, the study aims to improve the efficiency and reliability of decision-making in table tennis refereeing by leveraging sensor technology.

Design/methodology/approach

The study employs a design methodology focused on developing a sensor array system to enhance decision-making in table tennis refereeing. It introduces the twined-reinforcement chimp optimization (TRCO) framework, combining dual adaptive weighting strategies and a stochastic approach for optimization. By meticulously engineering the sensor array and utilizing complex optimization procedures, the study aims to improve the accuracy of detecting ball collisions on the table tennis table. The methodology aims to reduce the number of sensor units required while maintaining high precision, ultimately enhancing the reliability of decision-making in the sport.

Findings

The optimization research study yielded promising outcomes, showcasing a substantial reduction in the number of sensor units required from the initial count of 60 to a more practical 49. The sensor array system demonstrated excellent accuracy in identifying the locations of ball collisions, with error margins significantly below the critical 3.5 mm cutoff. Through the implementation of the twined-reinforcement chimp optimization (TRCO) framework, which integrates dual adaptive weighting strategies and a stochastic approach, the study achieved its goal of enhancing the efficiency and reliability of decision-making in table tennis refereeing.

Originality/value

This study introduces novel contributions to the field of table tennis refereeing by pioneering the development and optimization of a sensor array system. The innovative twined-reinforcement chimp optimization (TRCO) framework, integrating dual adaptive weighting strategies and a stochastic approach, sets a new standard for sensor node distribution in sports technology. By substantially reducing the number of sensor units required while maintaining high accuracy in detecting ball collisions, this research offers practical solutions to address the inherent subjectivity and imprecision in decision-making processes. The study’s originality lies in its meticulous design methodology and complex optimization procedures, offering significant value to the field of sports technology and officiating.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 July 2024

Jun Yan Cui, Hakim Epea Silochi, Robert Wieser1, Shi Junwen, Habachi Bilal, Samuel Ngoho and Blaise Ravelo

The purpose of this paper is to develop a familiarity analysis of resistive-capacitive (RC) network active circuit operating with unfamiliar low-pass (LP) type negative group…

Abstract

Purpose

The purpose of this paper is to develop a familiarity analysis of resistive-capacitive (RC) network active circuit operating with unfamiliar low-pass (LP) type negative group delay (NGD) behavior. The design method of NGD circuit is validated by simulation with commercial tool and experimental measurement.

Design/methodology/approach

The present research work methodology is structured in three main parts. The familiarity theory of RC-network LP-NGD circuit is developed. The LP-NGD circuit parameters are expressed in function of the targeted time-advance. Then, the feasibility study is based on the theory, simulation and measurement result comparisons.

Findings

The RC-network based LP-NGD proof of concept is validated with −1 and −0.5 ms targeted time-advances after design, simulation, test and characterized. The LP-NGD circuit unity gain prototype presents NGD cut-off frequencies of about 269 and 569 Hz for the targeted time-advances, −1 and −0.5 ms, respectively. Bi-exponential and arbitrary waveform signals were tested to verify the targeted time-advance.

Research limitations/implications

The performance of the unfamiliar LP-NGD topology developed in the present study is limited by the parasitic elements of constituting lumped components.

Practical implications

The NGD circuit enables to naturally reduce the undesired delay effect from the electronic and communication systems. The NGD circuit can be exploited to reduce the delay induced by electronic devices and system.

Social implications

As social impacts of the NGD circuit application, the NGD function is one of prominent solutions to improve the technology performances of future electronic device in term of communication aspect and the transportation system.

Originality/value

The originality of the paper concerns the theoretical approach of the RC-network parameters in function of the targeted time-advance and the input signal bandwidth. In addition, the experimental results are also particularly original.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 31 October 2022

Cyril Chinonso Ejidike, Modupe Cecilia Mewomo and Iruka Chijindu Anugwo

The current movement toward digitisation has promoted the adoption of smart building technology globally. Despite its advantages, its usage in developing countries such as Nigeria…

2395

Abstract

Purpose

The current movement toward digitisation has promoted the adoption of smart building technology globally. Despite its advantages, its usage in developing countries such as Nigeria is still very low. Therefore, the purpose of this paper is to investigate construction professionals' awareness of smart building concepts (SBCs) in the Nigerian construction industry and identify the parameters by which SBCs can be measured.

Design/methodology/approach

A quantitative survey was carried out using a questionnaire to gather relevant data in the study area. This paper was conducted on 363 registered construction professionals in the Nigerian construction industry. The collected data were analysed using descriptive statistics and Kruskal–Wallis H test analysis.

Findings

This paper indicated that the majority of Nigerian construction professionals are aware of SBCs. Furthermore, the Kruskal–Wallis H test shows no significant difference between the awareness level of the various construction professionals. This paper further revealed energy management systems, IT network connectivity, safety and security management systems and building automation systems as the most significant parameters in which SBCs can be measured.

Practical implications

This paper identified significant parameters influencing SBCs awareness in the Nigerian construction industry. These parameters can be integrated into the building during the design stage and can be incorporated into the policymaking process of construction firms to promote the awareness of SBCs and encourage practices related to construction sustainability.

Originality/value

This paper provides empirical evidence on the awareness of SBCs among construction professionals and significant parameters influencing awareness in the Nigerian construction industry.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 5
Type: Research Article
ISSN: 1726-0531

Keywords

Abstract

Details

Achieving the United Nations Sustainable Development Goals: Late or Too Late?
Type: Book
ISBN: 978-1-83549-407-3

Open Access
Article
Publication date: 28 June 2024

Olivia McDermott, Cian Moloney, John Noonan and Angelo Rosa

The current paper aims to discuss the implementation of Green Lean Six Sigma (GLSS) in the food industry to improve sustainable practices. The focus is more specifically on dairy…

Abstract

Purpose

The current paper aims to discuss the implementation of Green Lean Six Sigma (GLSS) in the food industry to improve sustainable practices. The focus is more specifically on dairy processors to ascertain the current state of the literature and aid future research direction.

Design/methodology/approach

Utilising a systematic literature review (SLR), the paper addresses various terms and different written forms in the literature. The study characterises the current deployment of GLSS in the food industry and explains the reported benefits of this approach.

Findings

GLSS, a concept that has yet to be fully explored in the food industry, as in other sectors, holds significant potential to enhance the food industry’s sustainability practices. The dairy sector, a subsector of the food industry known for its high greenhouse gas emissions, is a prime candidate for the application of GLSS. In instances where it has been applied, GLSS has demonstrated its effectiveness in improving sustainability, reducing waste, lowering greenhouse gas emissions and minimising water usage. However, the specific tools used and the model for GLSS implementation are areas that require further study, as they have the potential to revolutionise food industry operations and reduce their environmental impacts.

Practical implications

Benchmarking of this research by the food industry sector and by academics can aid understanding of the practical application of GLSS tools and aid implementation of these practices to evolve the dairy processing sector in the next decade as sustainability champions in the sector.

Originality/value

This study extensively analyses GLSS in the food industry, with a particular focus on dairy processors.

Details

British Food Journal, vol. 126 no. 13
Type: Research Article
ISSN: 0007-070X

Keywords

1 – 10 of 38