Search results

1 – 10 of 12
Article
Publication date: 1 March 2001

J.F. Charpentier and G. Lemarquand

This paper deals with a way of computation of the mechanical behavior of permanent magnet synchronous couplings. This method is based on the calculation of the forces between the…

Abstract

This paper deals with a way of computation of the mechanical behavior of permanent magnet synchronous couplings. This method is based on the calculation of the forces between the magnets of the device. The formulation of these forces is based on magnetic pole theory. The computation is done using a semi‐numerical integration method. This method has been validated in test cases and appears to be very advantageous in terms of calculation time and precision. So this solution appears to be a good way to study and design this kind of device.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 20 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 July 2019

Reza Safaeian and Hossein Heydari

Permanent magnet passive magnetic bearings (PMBs) are used for suspension of rotating shafts in one direction. PMBs with alternating radially magnetized rings having back iron is…

Abstract

Purpose

Permanent magnet passive magnetic bearings (PMBs) are used for suspension of rotating shafts in one direction. PMBs with alternating radially magnetized rings having back iron is one of the most optimum configurations among all configurations of PMBs. This paper aims to investigate the effect of the conductivity and permeability of these back irons on the stiffness and damping of the configuration.

Design/methodology/approach

The stiffness and damping of the configuration will be calculated through a 2D dynamic analytical method and validated by FEM simulations.

Findings

The results of the paper show how the permeability and conductivity of the back irons can affect stiffness and damping of PMB. Furthermore, the size of the magnets and the air intervals between them are optimized for maximum stiffness and damping.

Originality/value

The results show that these bearings can have some intrinsic damping without any loss of stiffness, which can be useful for many applications.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 March 2019

Reza Safaeian and Hossein Heydari

This paper aims to suggest the use of air or iron intervals between axially magnetized rings to increase the forces and stiffness of permanent magnet passive magnetic bearings…

Abstract

Purpose

This paper aims to suggest the use of air or iron intervals between axially magnetized rings to increase the forces and stiffness of permanent magnet passive magnetic bearings (PMBs). The paper calculates the stiffness of such bearings through an analytical method and optimizes the dimensions of the magnets for achieving maximum stiffness.

Design/methodology/approach

For determining the magnetic fields distribution, forces and stiffness of the bearings, a 2D analytical method is used, based on the subdomain method. For the sake of generalization, all of the parameters are normalized and optimized for maximum normalized stiffness per magnet volume ratio.

Findings

The optimum sizes of the magnets as well as the optimum dimensions of the air or iron intervals are calculated in this paper. The optimum sizes of the magnets are around the air gap length and it is very difficult to realize them. Using iron intervals can improve the stiffness to the extremely high values in practical dimensions of the magnets.

Originality/value

This paper presents a novel configuration for improving the performance of PMBs with alternately axially magnetized rings.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 January 2015

Massimo Fabbri, Pier Luigi Ribani and Davide Zuffa

A conveyor device is studied with the aim to reduce the friction between the inner surface of the beam and the chain. The lower is the friction between the chain and the beam, the…

Abstract

Purpose

A conveyor device is studied with the aim to reduce the friction between the inner surface of the beam and the chain. The lower is the friction between the chain and the beam, the lower is the surface wear. The magnetic repulsion force among permanent magnets (PMs) placed on the beam and on the chain is utilized to reduce friction. The paper aims to discuss these issues.

Design/methodology/approach

The considered magnetic suspension is realized with PMs in repulsive configuration; it is designed by solving a constrained optimization problem, with reference to the geometry of the 90° horizontal bend FlexLink WL322 conveyor. Flux density field and its gradient are evaluated using volume integral equation method, allowing to calculate the forces acting on the chain and the stiffness of the magnetic suspension.

Findings

The magnetic suspension prototype was manufactured and tested. The experimental and calculated values of the forces acting on the chain compares well. A stable horizontal equilibrium of the chain was obtained during both static and dynamical tests.

Research limitations/implications

The quasi-static model used neglects the dynamical interactions among the elements of the chain, the PMs and loads weight during motions and the eddy current losses in the aluminium beam. However the dynamical tests on the prototype show that the chain motion is regular up to the nominal velocity all along the conveyor with the exception of the trailing edge of the 90° curve.

Practical implications

The tests on the prototype show the possibility of a removal or at least a reduction of the friction force between the chain and the inner side of the beam by means of a passive magnetic suspension. As a consequence a reduction of noise and vibrations and an increase of the mean-time-to-failure is expected.

Originality/value

Prototype testing shows that the unavoidable vertical instability of the magnetic forces has no practical consequence since, reducing the allowed vertical gap, the chain is stabilized by the gravitational force.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 13 July 2010

J.L.G. Janssen, J.J.H. Paulides and E.A. Lomonova

The purpose of this paper is to present novel analytical expressions which describe the 3D magnetic field of arbitrarily magnetized triangular‐shaped charged surfaces. These…

Abstract

Purpose

The purpose of this paper is to present novel analytical expressions which describe the 3D magnetic field of arbitrarily magnetized triangular‐shaped charged surfaces. These versatile expressions model that the field of triangular‐shaped permanent magnets (PMs) are very suitable to model skewed slotless machines.

Design/methodology/approach

The analytical 3D surface charge method is normally used to provide field expressions for PMs in free space. In this paper, the analytical surface charge integrals are analytically solved for charged right‐triangular surfaces. The resulting field is compared with that obtained by finite element modeling (FEM) and subsequently applied in two examples.

Findings

The comparison with FEM shows that the 3D analytical expressions are very accurate and exhibit very low‐numerical noise. These fast‐solving versatile expressions are therefore considered suitable to model triangular‐shaped or polyhedral‐shaped PMs.

Research limitations/implications

The surface charge method assumes that the relative permeability is equal to 1 and therefore soft‐magnetic materials need to be modeled using the method of images. The PMs are assumed to be ideal in terms of homogeneity, magnetization vector, permeability, demagnetization, and geometrical tolerances.

Practical implications

Many applications, such as the subclass of slotless synchronous linear actuators with a skewed PM structure and planar magnetic bearings, are very suitable to incorporate this modeling technique, since it enables the analysis of a variety of performance data.

Originality/value

As an addition to the common 3D analytical field expressions for cuboidal or cylindrical PMs, this paper presents novel expressions for magnets having triangular surfaces.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 20 March 2017

Yong Zhao, Jue Yu, Hao Wang, Genliang Chen and Xinmin Lai

This paper aims to propose an electromagnetic prismatic joint with variable stiffness. The joint can absorb the sudden shocks and improve the natural dynamics of robotics. The…

Abstract

Purpose

This paper aims to propose an electromagnetic prismatic joint with variable stiffness. The joint can absorb the sudden shocks and improve the natural dynamics of robotics. The ability of regulating the output stiffness can also be used for force control in industrial applications.

Design/methodology/approach

Unlike some existing designs of variable stiffness joints (VSJs) in which the stiffness regulation is implemented using the stiffness adjustment motor and mechanisms, the main structure of the electromagnetic VSJ is a permanent magnet (PM) arranged inside coaxial cylinder coils. The adjustment of input current can cause the change of magnetic force between the PM and the cylinder coils, and thus leads to the variation of output stiffness.

Findings

According to the theoretical model, the output stiffness of the electromagnetic VSJ is linearly proportional to the input current. The experiments further indicate that the current-controlled stiffness can make the stiffness variation response of this VSJ more rapid for practical applications. Due to the large damping introduced by the copper-based self-lubrication bearings, the VSJ shows good properties in motion positioning and trajectory tracking.

Originality/value

In summary, the electromagnetic VSJ is compact in size and light in weight. It is possible to realize the online adaptability to work conditions with dynamic load by using this VSJ.

Details

Industrial Robot: An International Journal, vol. 44 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 3 July 2017

Thomas Rezek Matsumoto and Ivan Chabu

The purpose of this paper is to propose an analytical approach to determine the resistive torque caused by a conductive wall between the rotors of axial permanent magnet…

Abstract

Purpose

The purpose of this paper is to propose an analytical approach to determine the resistive torque caused by a conductive wall between the rotors of axial permanent magnet couplings. In this configuration, relative motion between the coupling rotors and the wall generates a resistive torque that is a consequence of the induced eddy currents in this barrier. Therefore, such induced resistive torque implies a reduction in the permanent magnet coupling performance, that is, its torque transmission capacity.

Design/methodology/approach

The developed resistive torque analytical formulation was based on eddy-current brakes of previous studies. To validate the proposed method, tests were conducted in a prototype and results were compared with analytical ones.

Findings

The analytical method showed a good correlation with the experiment data. Furthermore, a major degradation of the coupling capability to transmit torque was found because of the conductive wall presence, enhancing the importance of predicting such phenomenon when designing these devices.

Originality/value

A novel direct assessment of the resistive torque while in motion is presented in this paper. These measurements were of great importance to accurately compare the analytical and experimental data.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Book part
Publication date: 13 October 2008

Ashok Swain

Water has been called the oil of the 21st century. Global water consumption is rising steeply and the lack of adequate supplies of quality water is a problem in many parts of the…

Abstract

Water has been called the oil of the 21st century. Global water consumption is rising steeply and the lack of adequate supplies of quality water is a problem in many parts of the world. Water is one of the most abundant elements of earth, covering nearly 1,400 million cubic kilometers, nearly 70 percent of the planet's surface. However, only a very minor portion of this huge volume is actually usable. The rest forms oceans and polar ice caps. Availability of usable water is further limited by the fact that it cannot be easily exported over long distances.

Details

Conflict and Peace in South Asia
Type: Book
ISBN: 978-1-84950-534-5

Article
Publication date: 14 February 2022

Aziz Zerioul, Larbi Hadjout, Youcef Ouazir, Smail Mezani and Mohammed Messadi

The purpose of this paper is to develop a new and fast three-dimensional (3D) analytical model to study a synchronous axial magnetic coupling with rectangular shaped magnets. This…

Abstract

Purpose

The purpose of this paper is to develop a new and fast three-dimensional (3D) analytical model to study a synchronous axial magnetic coupling with rectangular shaped magnets. This model takes into account edge and curvature 3D effects.

Design/methodology/approach

This paper firstly introduces a 3D analytical model for an axial coupler with sector shaped permanent magnet (PM) based on magnetic scalar potential formulation in cylindrical coordinates. The magnetic field in PM, air gap and iron disks is computed by solving Laplace’s and Poisson’s partial differential equation. This solution is then used to compute the field in rectangular shaped magnets. To do so, the adopted approach consists to divide the rectangular magnet into sector radial slices each of which the 3D model allows the determination of the magnetic field distribution. The results obtained by the proposed 3D analytical model are validated through 3D finite element computations. Furthermore, a prototype axial magnetic coupler has been constructed so air gap flux density and static torque measurements are compared to the analytical predictions.

Findings

The results obtained by the analytical model show the effectiveness of the proposed geometry transformation approach. The developed model takes into account all the 3D effects without needing any correction factor.

Research limitations/implications

The developed method provides an efficient and rapid tool for evaluating the influence of geometric and physical parameters of a synchronous magnetic coupling as part of a design optimization process.

Practical implications

The developed method provides an efficient and rapid tool for evaluating the influence of geometric and physical parameters of a synchronous magnetic coupling as part of a design optimization process.

Originality/value

A new and fast 3D analytical model, to improve the computation of the electromagnetic torque developed by a synchronous magnetic coupler with rectangular shaped magnets, has been developed. The proposed approach is really effective as it leads to consistent results when compared to 3D finite element method ones without any need for correction factor.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 October 2017

Shyh-Leh Chen, Pei-Hua Lee and Chow-Shing Toh

This paper is concerned with the design and analysis of a bearingless motor.

Abstract

Purpose

This paper is concerned with the design and analysis of a bearingless motor.

Design/methodology/approach

The bearingless motor is obtained by a regular three-pole active magnetic bearing with an intentionally attached unbalanced mass on the rotor. It is the unbalanced mass that will generate the rotational torque for the motor function. Modeling and control of the unbalanced mass-type bearingless motor have been considered.

Findings

It is found through simulations that both functions of motor and magnetic bearing can indeed be achieved in this system.

Originality/value

This novel bearingless motor requires no additional windings and permanent magnets. Thus, it can greatly reduce the cost and design of the bearingless motor.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 12