Search results

1 – 10 of 36
Article
Publication date: 8 November 2023

Panagiotis Kordas, Konstantinos Fotopoulos, George Lampeas, Evangelos Karelas and Evgenios Louizos

Fuselage structures are subjected to combinations of axial, bending, shear and differential pressure loads. The validation of advanced metallic and composite fuselage designs…

Abstract

Purpose

Fuselage structures are subjected to combinations of axial, bending, shear and differential pressure loads. The validation of advanced metallic and composite fuselage designs against such loads is based on the full-scale testing of the fuselage barrel, which, however, is highly demanding from a time and cost viewpoint. This paper aims to assist in scaling-down the experimentation to the stiffened panel level which presents the opportunity to validate state-of-the-art designs at higher rates than previously attainable.

Design/methodology/approach

Development of a methodology to successfully design tests at the stiffened panel level and realize them using advanced, complex and adaptable test-rigs that are capable of introducing independently a set of distinct load types (e.g. internal overpressure, tension, shear) while applying appropriate boundary conditions at the edges of the stiffened panel.

Findings

A baseline test-rig configuration was developed after extensive parametric modelling studies at the stiffened panel level. The realization of the loading and boundary conditions on the test-rig was facilitated through innovative supporting and loading system set-ups.

Originality/value

The proposed test bench is novel and compared to the conventional counterparts more viable from an economic and manufacturing point of view. It leads to panel responses, which are as close as possible to those of the fuselage barrel in-flight and can be used for the execution of static or fatigue tests on metallic and thermoplastic curved integrally stiffened full-scale panels, representative of a business jet fuselage.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 18 July 2023

Zhongge Guo, Yuhui Wang, Jiale He and Dong Pang

This paper aims to present a novel dynamic reliability model that considers the interval mixed uncertainty for the air-breathing hypersonic flight vehicle (AHFV) to guarantee…

Abstract

Purpose

This paper aims to present a novel dynamic reliability model that considers the interval mixed uncertainty for the air-breathing hypersonic flight vehicle (AHFV) to guarantee flight safety and structural reliability.

Design/methodology/approach

Initially, the force condition of the fuselage is analyzed based on the longitudinal elastic model of an AHFV. Subsequently, a new high-efficiency dynamic reliability model is presented to describe the failure probability evolution of the fuselage structure. For the random uncertainty problem with interval distribution parameters, the interval PHI2 method of time-dependent reliability is used to obtain the time-dependent reliability interval of the AHFV. Finally, the key variables that affect the failure probability accumulation are determined, which provide an important reference for ensuring structural reliability and improving the life span of AHFVs.

Findings

It is demonstrated that the proposed reliability model can obtain more accurate dynamic reliability results for the fuselage, and it is confirmed the key variables that affect the failure probability accumulation. The results also provide an important reference for the reliability analysis of hypersonic vehicles.

Originality/value

The novelty of this work comes from the first application of the PHI2 method (considering the interval mixed uncertainty) in the AHFV and the development of a new reliability model for the entire body of AHFVs. The proposed analysis scheme is implemented on the dynamic model of the AHFV, which provides a more accurate reference for improving the structural reliability and life span of AHFVs.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 19 March 2024

Zhenlong Peng, Aowei Han, Chenlin Wang, Hongru Jin and Xiangyu Zhang

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC…

Abstract

Purpose

Unconventional machining processes, particularly ultrasonic vibration cutting (UVC), can overcome such technical bottlenecks. However, the precise mechanism through which UVC affects the in-service functional performance of advanced aerospace materials remains obscure. This limits their industrial application and requires a deeper understanding.

Design/methodology/approach

The surface integrity and in-service functional performance of advanced aerospace materials are important guarantees for safety and stability in the aerospace industry. For advanced aerospace materials, which are difficult-to-machine, conventional machining processes cannot meet the requirements of high in-service functional performance owing to rapid tool wear, low processing efficiency and high cutting forces and temperatures in the cutting area during machining.

Findings

To address this literature gap, this study is focused on the quantitative evaluation of the in-service functional performance (fatigue performance, wear resistance and corrosion resistance) of advanced aerospace materials. First, the characteristics and usage background of advanced aerospace materials are elaborated in detail. Second, the improved effect of UVC on in-service functional performance is summarized. We have also explored the unique advantages of UVC during the processing of advanced aerospace materials. Finally, in response to some of the limitations of UVC, future development directions are proposed, including improvements in ultrasound systems, upgrades in ultrasound processing objects and theoretical breakthroughs in in-service functional performance.

Originality/value

This study provides insights into the optimization of machining processes to improve the in-service functional performance of advanced aviation materials, particularly the use of UVC and its unique process advantages.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 1 April 2024

Zeyang Zhou and Jun Huang

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Abstract

Purpose

This study aims to learn the dynamic radar cross-section (RCS) of a deflection air brake.

Design/methodology/approach

The aircraft model with delta wing, V-shaped tail and blended wing body is designed, and high-precision unstructured grid technology is used to deal with the surface of air brake and fuselage. The calculation method based on multiple tracking and dynamic scattering is presented to calculate RCS.

Findings

The fuselage has a low scattering level, and the opening air brake will bring obvious dynamic RCS effects to itself and the whole machine. The average indicator of air brake RCS can be lower than –0.6 dBm2 under the tail azimuth, while that of forward and lateral direction is lower. The mean RCS of fuselage is obviously higher than that of air brake, while the deflected air brake and its cabin can still provide strong scattering sources at some azimuths. When the air brake is opening, the change amplitude of the aircraft forward RCS can exceed 19.81 dBm2.

Practical implications

This research has practical significance for the dynamic electromagnetic scattering analysis and stealth design of the air brake.

Originality/value

The calculation method for aircraft RCS considering air brake dynamic deflection has been established.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 September 2023

Oguz Kose, Tugrul Oktay and Enes Özen

The purpose of this paper is to obtain values that stabilize the lateral and longitudinal flight of the quadrotor for which the morphing amount and the best…

Abstract

Purpose

The purpose of this paper is to obtain values that stabilize the lateral and longitudinal flight of the quadrotor for which the morphing amount and the best Proportional-Integral-Derivative (PID) coefficients are determined by using the simultaneous perturbation stochastic approximation (SPSA) optimization algorithm.

Design/methodology/approach

Quadrotor consists of body and arms; there are propellers at the ends of the arms to take off and rotors that rotate them. By reducing the angle between mechanism 1 and the rotors with the horizontal plane, the angle between mechanism 2 and the arms, the rotors rise and different configurations are obtained. Conventional multi-rotor aircraft has a fixed fuselage and does not need a tail rotor to change course as helicopters do. The translational and rotational movements are provided by the rotation of the rotors of the aircraft at different speeds by creating moments about the geometric center in 6-degree-of-freedom (DOF) space. These commands sent from the ground are provided by the flight control board in the aircraft. The longitudinal and lateral flight stability and properties of different configurations evaluated by dynamic analysis and simulations in 6 DOF spaces are investigated. An algorithm and PID controller are being developed using SPSA to achieve in-flight position and attitude control of an active deformable aircraft. The results are compared with the results of the literature review and the results of the previous article.

Findings

With SPSA, the best PID coefficients were obtained in case of morphing.

Research limitations/implications

The effects of quadrotor arm height and hub angle changes affect flight stability. With the SPSA optimization method presented in this study, the attitude is quickly stabilized.

Practical implications

With the optimization method, the most suitable PID coefficients and angle values for the lateral and longitudinal flight stability of the quadrotor are obtained.

Social implications

The transition rate and PID coefficients are determined by using the optimization method, which is advantageous in terms of cost and practicality.

Originality/value

With the proposed method, the aircraft can change shape to adapt to different environments, and the parameters required for more stable flight for each situation will be calculated, and this will be obtained more quickly and safely with the SPSA optimization method.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 July 2023

Guihang Liu, Runxia Guo and Jiusheng Chen

Maintenance stands are the most valuable maintenance resources and provide the necessary maintenance space and maintenance facilities for aircraft maintenance. To expand the…

Abstract

Purpose

Maintenance stands are the most valuable maintenance resources and provide the necessary maintenance space and maintenance facilities for aircraft maintenance. To expand the maintenance market, maintenance, repair and overhaul (MRO) urgently need to achieve a reasonable schedule between aircraft maintenance requirements and maintenance stand capability to improve aircraft maintenance continuity and reduce the risk of scratching due to aircraft movement. This study aims to design a maintenance stand scheduling (MSS) model based on spatiotemporal constraints to solve the problem of maintenance stand schedules.

Design/methodology/approach

To address the problem of maintenance stand schedules, this study introduces mixed-integer programming algorithm to design the MSS model on the basis of classical hybrid flow shop structure. When designing the optimization objective function of MSS modeling, the spatiotemporal constraints are mainly considered. Specifically, first, the spatial constraints between maintenance stands are fully considered so that more aircraft can be parked in the workshop. Second, the optimization objective is designed to minimize the number of aircraft movements by defining multiple maintenance capabilities of the stand. Finally, a solution based on spatiotemporal constraints is proposed in the solving process.

Findings

A set of MRO production data from Guangzhou is used as a test data set to demonstrate the effectiveness of the proposed MSS model.

Originality/value

The types of maintenance stands are defined and divided into four categories: fixed stand, temporary stand, half-body stand and engine ground test stand, which facilitates optimal modeling; a new scheduling model is designed considering both temporal constraints and spatial constraints, which can improve both the utilization of maintenance stand and safety (reduce the risk of scratching between aircraft).

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 October 2023

Chenghu Li

This paper aims to study the influences of eccentricity on the fastener load and bearing strength of the eccentric connection in the aircraft structure.

Abstract

Purpose

This paper aims to study the influences of eccentricity on the fastener load and bearing strength of the eccentric connection in the aircraft structure.

Design/methodology/approach

The special experiment is designed for the researches. The fastener loads of the eccentric connection are gained by using the derived formulas and numerical analysis, and the fastener load rules is verified by the experiment. The bearing strength of the eccentric connection is investigated by the experiments under different eccentricities compared with that gained from the experiment.

Findings

The study results are summarized as follows. Magnitude of the fastener load in the eccentric connection is greatly affected by distance from the fastener to the centroid of the fastener cluster and that from the fastener to the concentrated load. With the increase of eccentricity of the homolateral concentrated load, the fastener load increases, and difference of the fastener loads becomes larger, forming the short plate effect of the bucket. It means that fastener with the maximum load (the shortest plate of the bucket) leads to decrease of the bearing strength of the eccentric connection (the capacity of the bucket).

Originality/value

The investigation on the influence of eccentricity on the bearing strength of eccentric connection is firstly presented. The vector expression of the fastener load in eccentric connection is firstly derived. And the influencing mechanism of the fastener load on the bearing strengths of the different eccentric connections is demonstrated. The study results can provide guidance for the structure design of the eccentric connection.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 March 2024

Shuowen Yan, Pu Xue, Long Liu and M.S. Zahran

This study aims to investigate the design and optimization of landing gear buffers to improve the landing-phase comfort of civil aircraft.

Abstract

Purpose

This study aims to investigate the design and optimization of landing gear buffers to improve the landing-phase comfort of civil aircraft.

Design/methodology/approach

The vibration comfort during the landing and taxiing phases is calculated and evaluated based on the flight-testing data for a type of civil aircraft. The calculation and evaluation are under the guidance of the vibration comfort standard of GB/T13441.1-2007 and related files. The authors establish here a rigid-flexible coupled multibody dynamics finite element model of one full-size aircraft. Furthermore, the authors also implement a dynamic simulation for the landing and taxiing processes. Also, an analysis of how the main parameters of the buffers affect the vibration comfort is presented. Finally, the optimization of the single-chamber and double-chamber buffers in the landing gear is performed considering vibration comfort.

Findings

The double-chamber buffer with optimized parameters in landing gear can improve the vibration comfort of the aircraft during the landing and taxiing phases. Moreover, the comfort index can be increased by 25.6% more than that of a single-chamber type.

Originality/value

To the best of the authors’ knowledge, this study first investigates the evaluation methods and evaluation indexes on the aircraft vibration comfort, then further conducts the optimization of the parameters of landing gear buffer with different structures, so as to improve the comfort of aircraft passengers during landing process. Most of the current studies on aircraft landing gear have focused on the strength and safety of the landing gear, with very limited research on cabin vibration comfort during landing and subsequent taxiing because of the coupling of runway surface unevenness and airframe vibration.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 5 October 2023

Kaikai Shi, Hanan Lu, Xizhen Song, Tianyu Pan, Zhe Yang, Jian Zhang and Qiushi Li

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn…

Abstract

Purpose

In a boundary layer ingestion (BLI) propulsion system, the fan operates continuously under distorted inflow conditions, leading to an increment of aerodynamic loss and in turn impacting the potential fuel burn reduction of the aircraft. Usually, in the preliminary design stage of a BLI propulsion system, it is essential to assess the impact of fuselage boundary layer fluids on fan aerodynamic performances under various flight conditions. However, the hub region flow loss is one of the major loss sources in a fan and would greatly influence the fan performances. Moreover, the inflow distortion also results in a complex and highly nonlinear mapping relation between loss and local physical parameters. It will diminish the prediction accuracy of the commonly used low-fidelity computational approaches which often incorporate traditional physics-based loss models, reducing the reliability of these approaches in evaluating fan performances. Meanwhile, the high-fidelity full-annulus unsteady Reynolds-averaged Navier–Stokes (URANS) approach, even though it can give rather accurate loss predictions, is extremely time-consuming. This study aims to develop a fast and accurate hub loss prediction method for a BLI fan under distorted inflow conditions.

Design/methodology/approach

This paper develops a data-driven hub loss prediction method for a BLI fan under distorted inflows. To improve the prediction accuracy and applicability, physical understandings of hub flow features are integrated into the modeling process. Then, the key physical parameters related to flow loss are screened by conducting a sensitivity analysis of influencing parameters. Next, a quasi-steady assumption of flow is made to generate a training sample database, reducing the computational time by acquiring one single sample from the highly time-consuming full-annulus URANS approach to a cost-efficient single-blade-passage approach. Finally, a radial basis function neural network is used to establish a surrogate model that correlates the input parameters and the output loss.

Findings

The data-driven hub loss model shows higher prediction accuracy than the traditional physics-based loss models. It can accurately capture the circumferentially and radially nonuniform variation trends of the losses and the associated absolute magnitudes in a BLI fan under different blade load, inlet distortion intensity and rotating speed conditions. Compared with the high-fidelity full-annulus URANS results, the averaged relative prediction errors of the data-driven hub loss model are kept less than 10%.

Originality/value

The originality of this paper lies in developing a new method for predicting flow loss in a BLI fan rotor blade hub region. This method offers higher prediction accuracy than the traditional loss models and lower computational time cost than the full-annulus URANS approach, which could realize fast evaluations of fan aerodynamic performances and provide technical support for designing high-performance BLI fans.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 December 2023

Mohamed Arif Raj Mohamed and Rathiya S.

This study aims to achieve optimum flow separation control for a road vehicle using a reverse flow fan on rear side.

Abstract

Purpose

This study aims to achieve optimum flow separation control for a road vehicle using a reverse flow fan on rear side.

Design/methodology/approach

A full-length reverse flow fan array (fan’s air speed is 50% of the car’s speed) is attached throughout the width of the vehicle at rear edge corner.

Findings

The reverse flow fan array positioned at rear edge of car pushes the airflow against the car’s rear window. It creates the recirculation region and alters the pressure distribution. This reduces the lift coefficient by 150%, which becomes the downforce and reduces the drag coefficient by 22%. As the car speed increases, fan speed should also be increased for effective flow control.

Research limitations/implications

This active flow control method for 3D Ahmed car body has been studied computationally at low speed (40 m/s).

Practical implications

This design increases the downforce, thus gives better cornering speed and stability, and decreases the drag which improves fuel efficiency. It can be used for effective flow control of cars (hatchback/sedan). The findings can be applied to the bluff bodies, road vehicles, UAV and helicopter fuselage for flow separation control.

Originality/value

The fan array is attached on car’s rear side, which blows air against the car’s rear window. It alters the pressure distribution and aerodynamics forces favorably. But the existing high-speed fan used in a sports cars sucks the air from bottom and pushes it rearward, which increases both the traction force and drag.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 36