Search results

1 – 10 of 27
Article
Publication date: 13 February 2023

Oguz Kose and Tugrul Oktay

The purpose of this paper is to optimize the simultaneous flight performance of a hexarotor unmanned aerial vehicle (UAV) by using simultaneous perturbation stochastic…

Abstract

Purpose

The purpose of this paper is to optimize the simultaneous flight performance of a hexarotor unmanned aerial vehicle (UAV) by using simultaneous perturbation stochastic approximation (i.e. SPSA), deep neural network and proportional integral derivative (i.e. PID) according to varying arm length (i.e. morphing).

Design/methodology/approach

In this paper, proper PID gain coefficients and morphing ratio were obtained using the stochastic optimization method, also known as SPSA to maximize flight efficiency. Because it is difficult to establish an analytical connection between the morphing ratio and hexarotor moments of inertia, the deep neural network was used to obtain the moments of inertia according to the morphing ratio. By using SPSA and deep neural network, the best performance indexes were obtained and both longitudinal and lateral flight simulations were performed with the obtained data.

Findings

With SPSA, the best PID coefficients and morphing ratio are obtained for both longitudinal and lateral flight. Because the hexarotor solid body model changes according to the morphing ratio, the moment of inertia values used in the simulations also change. According to the morphing ratio, the moment of inertia values was obtained with the deep neural network over a created data set.

Research limitations/implications

It takes a long time to obtain the morphing ratio suitable for the hexarotor model and the PID gain coefficients suitable for this morphing ratio. However, this situation can be overcome with the proposed SPSA. In addition, it takes a long time to obtain the appropriate moments of inertia according to the morphing ratio. However, in this case, it was overcome using the deep neural network.

Practical implications

Determining the morphing ratio and PID gain coefficients using the optimization method, as well as determining the moments of inertia using the deep neural network, is very useful as it can increase the efficiency of hexarotor flight and flight efficiently with different arm lengths. With the proposed method, the hexarotor design performance criteria (i.e. rise time, settling time and overshoot) values were significantly improved compared to similar studies.

Social implications

Determining the hexarotor flight parameters using SPSA and deep neural network provides advantages in terms of time, cost and applicability.

Originality/value

The hexarotor flight efficiency is improved with the proposed SPSA and deep neural network approaches. In addition, the desired flight parameters can be obtained more quickly and reliably with the proposed approaches. The design performance criteria were also improved, enabling the hexarotor UAV to follow the given trajectory in the best way and providing convenience for end users. SPSA was preferred because it converged faster than other methods. While other methods perform 2n operations per iteration, SPSA only performs two operations. To obtain the moment of inertia, many physical parameter values of the UAV are required in the existing methods. In the proposed method, by creating a date set, only arm length and moment of inertia were estimated without the need to obtain physical parameters with the deep neural network structure.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 September 2023

Oguz Kose, Tugrul Oktay and Enes Özen

The purpose of this paper is to obtain values that stabilize the lateral and longitudinal flight of the quadrotor for which the morphing amount and the best…

Abstract

Purpose

The purpose of this paper is to obtain values that stabilize the lateral and longitudinal flight of the quadrotor for which the morphing amount and the best Proportional-Integral-Derivative (PID) coefficients are determined by using the simultaneous perturbation stochastic approximation (SPSA) optimization algorithm.

Design/methodology/approach

Quadrotor consists of body and arms; there are propellers at the ends of the arms to take off and rotors that rotate them. By reducing the angle between mechanism 1 and the rotors with the horizontal plane, the angle between mechanism 2 and the arms, the rotors rise and different configurations are obtained. Conventional multi-rotor aircraft has a fixed fuselage and does not need a tail rotor to change course as helicopters do. The translational and rotational movements are provided by the rotation of the rotors of the aircraft at different speeds by creating moments about the geometric center in 6-degree-of-freedom (DOF) space. These commands sent from the ground are provided by the flight control board in the aircraft. The longitudinal and lateral flight stability and properties of different configurations evaluated by dynamic analysis and simulations in 6 DOF spaces are investigated. An algorithm and PID controller are being developed using SPSA to achieve in-flight position and attitude control of an active deformable aircraft. The results are compared with the results of the literature review and the results of the previous article.

Findings

With SPSA, the best PID coefficients were obtained in case of morphing.

Research limitations/implications

The effects of quadrotor arm height and hub angle changes affect flight stability. With the SPSA optimization method presented in this study, the attitude is quickly stabilized.

Practical implications

With the optimization method, the most suitable PID coefficients and angle values for the lateral and longitudinal flight stability of the quadrotor are obtained.

Social implications

The transition rate and PID coefficients are determined by using the optimization method, which is advantageous in terms of cost and practicality.

Originality/value

With the proposed method, the aircraft can change shape to adapt to different environments, and the parameters required for more stable flight for each situation will be calculated, and this will be obtained more quickly and safely with the SPSA optimization method.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 10
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 11 June 2020

Oguz Kose and Tugrul Oktay

The purpose of this paper is to design a quadrotor with collective morphing using the simultaneous perturbation stochastic approximation (SPSA) optimization algorithm.

Abstract

Purpose

The purpose of this paper is to design a quadrotor with collective morphing using the simultaneous perturbation stochastic approximation (SPSA) optimization algorithm.

Design/methodology/approach

Quadrotor design is made by using Solidworks drawing program and some mathematical performance relations. Modelling and simulation are performed in Matlab/Simulink program by using the state space model approaches with the parameters mostly taken from Solidworks. Proportional integral derivative (PID) approach is used as control technique. Morphing amount and the best PID coefficients are determined by using SPSA algorithm.

Findings

By using SPSA algorithm, the amount of morphing and the best PID coefficients are determined, and the quadrotor longitudinal and lateral flights are made most stable via morphing.

Research limitations/implications

It takes quite a long time to model the quadrotor in Solidworks and Matlab/Simulink with the state space model and using the SPSA algorithm. However, this situation is overcome with the proposed model.

Practical implications

Optimization with SPSA is very useful in determining the amount of morphing and PID coefficients for quadrotors.

Social implications

SPSA optimization method is useful in terms of cost, time and practicality.

Originality/value

It is released to improve performance with morphing, to determine morphing rate with SPSA algorithm and to determine PID coefficients accordingly.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 March 2022

Hüseyin Şahin, Oguz Kose and Tugrul Oktay

This study aims to optimize autonomous performance (i.e. both longitudinal and lateral) and endurance of the quadrotor type aerial vehicle simultaneously depending on the…

Abstract

Purpose

This study aims to optimize autonomous performance (i.e. both longitudinal and lateral) and endurance of the quadrotor type aerial vehicle simultaneously depending on the autopilot gain coefficients and battery weight.

Design/methodology/approach

Quadrotor design processes are critical to performance. Unmanned aerial vehicle durability is an important performance parameter. One of the factors affecting durability is the battery. Battery weight, energy capacity and discharge rate are important design parameters of the battery. In this study, proper autopilot gain coefficients and battery weight are obtained by using a stochastic optimization method named as simultaneous perturbation stochastic approximation (SPSA). Because there is no direct correlation between battery weight and battery energy density, artificial neural network (ANN) is benefited to obtain battery energy density corresponding to resulted battery weight found from SPSA algorithm. By using the SPSA algorithm optimum performance index is obtained, then obtained data is used for longitudinal and lateral autonomous flight simulations.

Findings

With SPSA, the best proportional integrator and derivative (PID) coefficients and battery weight, energy efficiency and endurance were obtained in case of morphing.

Research limitations/implications

It takes a long time to find the most suitable battery values depending on quadrotor endurance. However, this situation can be overcome with the proposed SPSA.

Practical implications

It is very useful to determine quadrotor endurance, PID coefficients and morphing rate using the optimization method.

Social implications

Determining quadrotor endurance, PID coefficients and morphing rate using the optimization method provides advantages in terms of time, cost and practicality.

Originality/value

The proposed method improves quadrotor endurance. In addition, with the SPSA optimization method and ANN, the parameters required for endurance will be obtained faster and more securely. In addition, the energy density according to the battery weight also contributes to the clean environment and energy efficiency.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 29 March 2024

Tugrul Oktay and Yüksel Eraslan

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design…

Abstract

Purpose

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design conducted with optimization, computational fluid dynamics (CFD) and machine learning approaches.

Design/methodology/approach

The main wing of the UAV is redesigned with morphing wingtips capable of dihedral angle alteration by means of folding. Aircraft dynamic model is derived as equations depending only on wingtip dihedral angle via Nonlinear Least Squares regression machine learning algorithm. Data for the regression analyses are obtained by numerical (i.e. CFD) and analytical approaches. Simultaneous perturbation stochastic approximation (SPSA) is incorporated into the design process to determine the optimal wingtip dihedral angle and proportional-integral-derivative (PID) coefficients of the control system that maximizes autonomous flight performance. The performance is defined in terms of trajectory tracking quality parameters of rise time, settling time and overshoot. Obtained optimal design parameters are applied in flight simulations to test both longitudinal and lateral reference trajectory tracking.

Findings

Longitudinal and lateral autonomous flight performances of the UAV are improved by redesigning the main wing with morphing wingtips and simultaneous estimation of PID coefficients and wingtip dihedral angle with SPSA optimization.

Originality/value

This paper originally discusses the simultaneous design of innovative morphing wingtip and UAV flight control system for autonomous flight performance improvement. The proposed simultaneous design idea is conducted with the SPSA optimization and a machine learning algorithm as a novel approach.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 24 November 2023

Sezer Çoban

The purpose of this research paper is to recover the autonomous flight performance of a mini unmanned aerial vehicle (UAV) via stochastically optimizing the wing over certain…

Abstract

Purpose

The purpose of this research paper is to recover the autonomous flight performance of a mini unmanned aerial vehicle (UAV) via stochastically optimizing the wing over certain parameters (i.e. wing taper ratio and wing aspect ratio) while there are lower and upper constraints on these redesign parameters.

Design/methodology/approach

A mini UAV is produced in the Iskenderun Technical University (ISTE) Unmanned Aerial Vehicle Laboratory. Its complete wing can vary passively before the flight with respect to the result of the stochastic redesign of the wing while maximizing autonomous flight performance. Flight control system (FCS) parameters (i.e. gains of longitudinal and lateral proportional-integral-derivative controllers) and wing redesign parameters mentioned before are simultaneously designed to maximize autonomous flight performance index using a certain stochastic optimization strategy named as simultaneous perturbation stochastic approximation (SPSA). Found results are used while composing UAV flight simulations.

Findings

Using stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV over previously mentioned wing parameters and FCS, it obtained a maximum UAV autonomous flight performance.

Research limitations/implications

Permission of the directorate general of civil aviation in the Republic of Türkiye is essential for real-time UAV autonomous flights.

Practical implications

Stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV wing parameters and FCS approach is very useful for improving any mini UAV autonomous flight performance cost index.

Social implications

Stochastic redesign of mini UAV and simultaneously designing mini ISTE UAV wing parameters and FCS approach succeeds confidence, highly improved autonomous flight performance cost index and easy service demands of mini UAV operators.

Originality/value

Creating a new approach to recover autonomous flight performance cost index (e.g. satisfying less settling time and less rise time, less overshoot during flight trajectory tracking) of a mini UAV and composing a novel procedure performing simultaneous mini UAV having passively morphing wing over certain parameters while there are upper and lower constraints and FCS design idea.

Article
Publication date: 7 March 2023

Metin Uzun and Tugrul Oktay

The purpose of this paper is to improve autonomous flight performance of an unmanned aerial vehicle (UAV) having actively sweep angle morphing wing using simultaneous UAV and…

Abstract

Purpose

The purpose of this paper is to improve autonomous flight performance of an unmanned aerial vehicle (UAV) having actively sweep angle morphing wing using simultaneous UAV and flight control system (FCS) design.

Design/methodology/approach

An UAV is remanufactured in the ISTE Unmanned Aerial Vehicle Laboratory. Its wing sweep angle can vary actively during flight. FCS parameters and wing sweep angle are simultaneously designed to optimize autonomous flight performance index using a stochastic optimization method called as simultaneous perturbation stochastic approximation (SPSA). Results obtained are applied for flight simulations.

Findings

Using simultaneous design process of an UAV having actively sweep angle morphing wing and FCS design, autonomous flight performance index is maximized.

Research limitations/implications

Authorization of Directorate General of Civil Aviation in Turkey is crucial for real-time UAV flights.

Practical implications

Simultaneous UAV having actively sweep angle morphing wing and FCS design process is so beneficial for recovering UAV autonomous flight performance index.

Social implications

Simultaneous UAV having actively sweep angle morphing wing and FCS design process achieves confidence, high autonomous performance index and simple service demands of UAV operators.

Originality/value

Composing a novel approach to improve autonomous flight performance index (e.g. less settling and rise time, less overshoot meanwhile trajectory tracking) of an UAV and creating an original procedure carrying out simultaneous UAV having actively sweep angle morphing wing and FCS design idea.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 June 2022

Firat Sal

This paper aims to offer a simultaneous design approach for helicopter having swept anhedral blade tip shape and helicopter flight control system (HFCS) to minimize controller…

Abstract

Purpose

This paper aims to offer a simultaneous design approach for helicopter having swept anhedral blade tip shape and helicopter flight control system (HFCS) to minimize controller cost.

Design/methodology/approach

By considering previously stated offer, control-oriented models and a stochastic optimization method are applied to minimize controller cost of the HFCS.

Findings

Using simultaneous design approach for helicopters having blade tip swept and blade tip anhedral causes considerably less control effort than the helicopters not benefiting this related design approach.

Practical implications

Simultaneous design approach for helicopters having blade tip swept and blade tip anhedral is applicable to consider fuel economy.

Originality/value

One important novelty of this paper is using simultaneous approach for determining optimum shape of blade tip swept and anhedral. Another considerable novelty of this paper is also using a stochastic optimization method called simultaneous perturbation stochastic approximation for previously mentioned purpose. In this paper, it is also reached that using simultaneous design approach for swept anhedral helicopter blade tip shape and HFCS causes less control effort than the helicopters not using this approach. This leads to less fuel consumption and green environment.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 October 2016

Turgul Oktay, Mehmet Konar, Murat Onay, Murat Aydin and Mohamed Abdallah Mohamed

The purpose of this paper is to increase flight performance of small unmanned aerial vehicle (UAV) using simultaneous UAV and autopilot system design.

Abstract

Purpose

The purpose of this paper is to increase flight performance of small unmanned aerial vehicle (UAV) using simultaneous UAV and autopilot system design.

Design/methodology/approach

A small UAV is manufactured in Erciyes University, College of Aviation, Model Aircraft Laboratory. Its wing and tail is able to move forward and backward in the nose-to-tail direction in prescribed interval. Autopilot parameters and assembly position of wing and tail to fuselage are simultaneously designed to maximize flight performance using a stochastic optimization method. Results are obtained are used for simulations.

Findings

Using simultaneous UAV and autopilot system design idea, flight performance is maximized.

Research limitations/implications

Permission of Directorate General of Civil Aviation in Turkey is required for testing UAVs in long range.

Practical implications

Simultaneous design idea is very beneficial for improving UAV flight performance.

Originality/value

Creating a novel method to improve flight performance of UAV and developing an algorithm performing simultaneous design idea.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 25 July 2008

Seu Keow Cheng and Booi Hon Kam

Sharing of risk benefits supplies network collaborations. The complex mix of heterogeneous collaborators in supply networks, however, also increases the complexity of the risk…

3965

Abstract

Purpose

Sharing of risk benefits supplies network collaborations. The complex mix of heterogeneous collaborators in supply networks, however, also increases the complexity of the risk profiles of inter‐related components within these networks. For a given network collaboration, several structures of network relationship are possible, with each carrying distinctive risk implications. This paper seeks to develop a conceptual framework for analysing the differential risks in alternative network structures.

Design/methodology/approach

To capture the structural significance of inter‐organisational dependency in networks, alternative typology of network relationships is formulated using agency theory. Basic constructs were developed for analysing risks in supply networks, with configurations ranging from the single‐principal, single‐agent to the complex multi‐principal, multi‐agent scenarios.

Findings

The study finds that dynamics of risk in network systems depend not only on the typology of networks, but also on the functional role of each collaborator inherent in the network through agreements on supply and incentives, and supply performance.

Originality/value

The proposed framework provides a structured approach for identifying and assessing risk dynamics and their differential impacts on different levels of supply networks. It provides insights into the dynamics of risk events and identifies network configurations that are vulnerable to different levels of risk.

Details

Journal of Enterprise Information Management, vol. 21 no. 4
Type: Research Article
ISSN: 1741-0398

Keywords

1 – 10 of 27