Search results

1 – 10 of 22
Article
Publication date: 12 January 2024

Manar Hamid Jasim and Ali Mohammed Ali Al-Araji

The purpose of this study is to model the theory of the low-velocity impact (LVI) process on sandwich beams consisting of flexible cores and face sheets reinforced with…

Abstract

Purpose

The purpose of this study is to model the theory of the low-velocity impact (LVI) process on sandwich beams consisting of flexible cores and face sheets reinforced with functionally graded carbon nanotubes (CNTs).

Design/methodology/approach

A series of parameters derived from molecular dynamics are used to consider the size scale in the mixture rule for the combination of CNTs and resin. A procedure involving the use of the first-order shear deformation theory of the beam is used to provide the displacement field of the sandwich beam. The energy method and subsequently the generalized Lagrange method are used to derive the motion equations. Due to the use of Hertz’s nonlinear theory to calculate the contact force, the equations of motion are nonlinear. Validation of the problem is carried out by comparing natural frequencies with other papers.

Findings

The influence of a series of parameters such as CNTs distributions pattern in the face sheets, the influence of the CNTs volume fraction and the influence of the core thickness to the face sheets thickness ratio in the issue of LVI on sandwich beams with clamped-clamped boundary conditions is investigated. The result shows that the type of CNTs pattern in the face sheet and the CNTs volume fraction have a very important effect on the answer to the problem, which is caused by the change in the value of the Young’s modulus of the beam at the contact surface. Changes in the core thickness to the face sheets thickness ratio has little effect on the impact response.

Originality/value

Considering the important application of sandwich structures in vehicles, aviation and ships, in this research, sandwich beams consisting of flexible core and CNTs-reinforced face sheets are investigated under LVI.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 April 2024

Natiq Yaseen Taha Al-Maneehlawi and Akram Jalil Kadhim Shubbar

The purpose of this paper is to investigate the nonsimultaneous impact of three impactors with spherical tip on the response of a low-velocity impact on a beam.

Abstract

Purpose

The purpose of this paper is to investigate the nonsimultaneous impact of three impactors with spherical tip on the response of a low-velocity impact on a beam.

Design/methodology/approach

In this research, the third-order shear deformation theory of the beam with hyperbolic shear-strain function is used. Hamilton’s principle is applied to derive the motion equations. To simulate nonsimultaneous impacts, by using the Hertz nonlinear contact law, the contact of the impactors with different times is simulated. Comparisons with other articles are carried out in the one impactor form.

Findings

In the parametric study, the histories of the contact force and displacement of the beam are investigated in the presence of only one impactor in the center of the beam and also in the presence of three impactors, one in the center of the beam and the other two around the first impactor with a delay. One of the important and noteworthy points is that the presence of two impactors with a delay causes the maximum contact force and contact time to decrease and the maximum displacement of the beam center to increase.

Originality/value

The original point of this paper is what is the difference between the impact response of one projectile and three nonsimultaneous projectiles on the beam.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 October 2023

Omar Imad Shukri Windi and Ali Sadik Gafer Qanber

The purpose of this study is to extract the response of the simultaneous low-velocity impact of multiple impactors on a porous functionally graded (FG) aluminum plate.

Abstract

Purpose

The purpose of this study is to extract the response of the simultaneous low-velocity impact of multiple impactors on a porous functionally graded (FG) aluminum plate.

Design/methodology/approach

To design a porous FG structure, a series of functions are applied using the porosity coefficient, and mechanical properties including Young’s modulus, shear modulus and the density of the porous structure are presented as a function of the axis placed in the direction of the plate thickness. The first-order shear deformation theory of the plate is used. To simulate the contact process between each impactor and the plate, a nonlinear Hertz contact force is considered for that impactor independently.

Findings

ABAQUS finite element software is used for the verification process of the theorical equations. The effects of porous function type, radius and initial velocity of impactor are investigated for the simultaneous impact of five impactors on porous FG aluminum plate with a simply supported boundary condition. Histories of contact force and displacement of the impactor placed in the center of the beam are analyzed in detail with the changes of the mentioned parameters.

Originality/value

Due to the advantages of porous aluminum plate such as high energy absorption and low weight, such structures may be subjected to the simultaneous impact of multiple impactors, which is studied in this research.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 12 March 2018

Rufei Yu and Wei Chen

This paper aims to propose a semi-analytical model to investigate the elastic-plastic contact between fractal rough surfaces. Parametric studies have been performed to analyze the…

Abstract

Purpose

This paper aims to propose a semi-analytical model to investigate the elastic-plastic contact between fractal rough surfaces. Parametric studies have been performed to analyze the dependencies between the contact properties and the scale-independent fractal parameters.

Design/methodology/approach

A modified two-variable Weierstrass-Mandelbrot function has been used to build the geometrical model of rough surfaces. The computation program was developed using software MATLAB R2015a. The results have been qualitatively validated by the existing theoretical and experimental results in the literature.

Findings

In most cases, a nonlinear relation between the load and the displacement of the rigid plane is found. Only under the condition of larger loads, an approximate linear relation can be seen for great D and small G values. (D: fractal dimension and G: fractal roughness).

Originality/value

The contact model of the cylindrical joints (conformal contact) with radial clearance is constructed by using the fractal theory and the Kogut-Etsion elastic-plastic contact model, which includes purely elastic, elastic-plastic and fully plastic contacts. The present method can generate a more reliable calculation result as compared with the Hertz contact model and a higher calculation efficiency as compared with the finite element method for the conformal contact problem.

Details

Industrial Lubrication and Tribology, vol. 70 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 January 1992

ZHI‐HUA ZHONG and JAROSLAV MACKERLE

Contact problems are among the most difficult ones in mechanics. Due to its practical importance, the problem has been receiving extensive research work over the years. The finite…

Abstract

Contact problems are among the most difficult ones in mechanics. Due to its practical importance, the problem has been receiving extensive research work over the years. The finite element method has been widely used to solve contact problems with various grades of complexity. Great progress has been made on both theoretical studies and engineering applications. This paper reviews some of the main developments in contact theories and finite element solution techniques for static contact problems. Classical and variational formulations of the problem are first given and then finite element solution techniques are reviewed. Available constraint methods, friction laws and contact searching algorithms are also briefly described. At the end of the paper, a bibliography is included, listing about seven hundred papers which are related to static contact problems and have been published in various journals and conference proceedings from 1976.

Details

Engineering Computations, vol. 9 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 24 June 2020

Manar Hamid Jasim, Ali Mohammad Ali Al-Araji, Bashar Dheyaa Hussein Al-Kasob and Mehdi Ranjbar

In the article, analytical model of first-order shear deformation (FSDT) beams made of jute–epoxy is presented to study the low-velocity impact response.

Abstract

Purpose

In the article, analytical model of first-order shear deformation (FSDT) beams made of jute–epoxy is presented to study the low-velocity impact response.

Design/methodology/approach

The nonlinear Hertz contact law is applied to identify the contact between projectile and beam. The energy method, Lagrange's equations and Ritz method are applied to derive the nonlinear governing equation of the beam and impactor-associated boundary condition. The motion equations are then solved simultaneously by the Runge–Kutta fourth-order method.

Findings

Also, a comparison is performed to validate the model predictions. The contact force and beam indentation histories of the jute–epoxy simply supported beam under spherical impactor with different radius and initial velocity are investigated in detail. It is found that in response to impactor radius increase, the utilization of the contact force law has resulted in a same increasing trend of peak contact force, impact duration and beam indentation, while in response to impactor initial velocity increase, the maximum contact force and beam indentation increase while impact time has vice versa trend.

Originality/value

This paper fulfills an identified need to study how jute–epoxy beam behavior with simply supported boundary conditions under low-velocity impact can be enabled.

Details

International Journal of Structural Integrity, vol. 12 no. 3
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 9 April 2018

Mehdi Akhondizadeh, Majid Fooladi Mahani, Masoud Rezaeizadeh and Hoseyn S. Mansouri

Oblique impacts which occur in many situations in mineral industries leads to material removal and fail of mechanical parts. Studies will be helpful in optimal design to have…

Abstract

Purpose

Oblique impacts which occur in many situations in mineral industries leads to material removal and fail of mechanical parts. Studies will be helpful in optimal design to have minimum machine malfunctions.

Design/methodology/approach

In the present work, the Hertz-Di Maio Di Renzo nonlinear model of contact is used to simulate the impact phenomenon as a micro-sliding process. The modified Archard equation is used to evaluate wear over the impact. The wear coefficient is evaluated by a pin-disk machine. An impact-wear tester is used to validate the model results.

Findings

The measurements indicate an increase in surface hardness because of the several impacts. It is considered in the wear predictive model.

Originality/value

The model predictions compared with the experimental data, obtained from the impact-wear tester, show that the model well predicts the impact wear and can be used as a predictive tool to study the practical design problems and to explain some phenomena associated with the percussive impact.

Details

Industrial Lubrication and Tribology, vol. 70 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 18 January 2024

Minglang Zhang, Xue Zuo and Yuankai Zhou

The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established…

Abstract

Purpose

The purpose of this paper is to reveal the dynamic contact characteristics of the slip ring. Dynamic contact resistance models considering wear and self-excited were established based on fractal theory.

Design/methodology/approach

The effects of tangential velocity, stiffness and damping coefficient on dynamic contact resistance are studied. The relationships between fractal parameters, wear time and contact parameters are revealed.

Findings

The results show that the total contact area decreases with the friction coefficient and fractal roughness under the same load. Self-excited vibration occurs at a low speed (less than 0.6 m/s). It transforms from stick-slip motion at 0.4 m/s to pure sliding at 0.5 m/s. A high stiffness makes contact resistance fluctuate violently, while increasing the damping coefficient can suppress the self-excited vibration and reduce the dynamic contact resistance. The fractal contact resistance model considering wear is established based on the fractal parameters models. The validity of the model is verified by the wear tests.

Originality/value

The results have a great significance to study the electrical contact behavior of conductive slip ring.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-09-2023-0300/

Details

Industrial Lubrication and Tribology, vol. 76 no. 2
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 1994

P.R. Masani

Presents the scientific methodology from the enlarged cybernetical perspective that recognizes the anisotropy of time, the probabilistic character of natural laws, and the entry…

Abstract

Presents the scientific methodology from the enlarged cybernetical perspective that recognizes the anisotropy of time, the probabilistic character of natural laws, and the entry that the incomplete determinism in Nature opens to the occurrence of innovation, growth, organization, teleology communication, control, contest and freedom. The new tier to the methodological edifice that cybernetics provides stands on the earlier tiers, which go back to the Ionians (c. 500 BC). However, the new insights reveal flaws in the earlier tiers, and their removal strengthens the entire edifice. The new concepts of teleological activity and contest allow the clear demarcation of the military sciences as those whose subject matter is teleological activity involving contest. The paramount question “what ought to be done”, outside the empirical realm, is embraced by the scientific methodology. It also embraces the cognitive sciences that ask how the human mind is able to discover, and how the sequence of discoveries might converge to a true description of reality.

Details

Kybernetes, vol. 23 no. 4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 June 2010

Beichuan Yan, Richard A. Regueiro and Stein Sture

The purpose of this paper is to develop a discrete element (DE) and multiscale modeling methodology to represent granular media at their particle scale as they interface solid…

1381

Abstract

Purpose

The purpose of this paper is to develop a discrete element (DE) and multiscale modeling methodology to represent granular media at their particle scale as they interface solid deformable bodies, such as soil‐tool, tire, penetrometer, pile, etc., interfaces.

Design/methodology/approach

A three‐dimensional ellipsoidal discrete element method (DEM) is developed to more physically represent particle shape in granular media while retaining the efficiency of smooth contact interface conditions for computation. DE coupling to finite element (FE) facets is presented to demonstrate initially the development of overlapping bridging scale methods for concurrent multiscale modeling of granular media.

Findings

A closed‐form solution of ellipsoidal particle contact resolution and stiffness is presented and demonstrated for two particle, and many particle contact simulations, during gravity deposition, and quasi‐static oedometer, triaxial compression, and pile penetration. The DE‐FE facet coupling demonstrates the potential to alleviate artificial boundary effects in the shear deformation region between DEM granular media and deformable solid bodies.

Research limitations/implications

The research is being extended to couple more robustly the ellipsoidal DEM code and a higher order continuum FE code via overlapping bridging scale methods, in order to remove dependence of penetration/shear resistance on the boundary placement for DE simulation.

Practical implications

When concurrent multiscale computational modeling of interface conditions between deformable solid bodies and granular materials reaches maturity, modelers will be able to simulate the mechanical behavior accounting for physical particle sizes and flow in the interface region, and thus design their tool, tire, penetrometer, or pile accordingly.

Originality/value

A closed‐form solution for ellipsoidal particle contact is demonstrated in this paper, and the ability to couple DE to FE facets.

Details

Engineering Computations, vol. 27 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 22