Search results

1 – 10 of 40
Article
Publication date: 2 August 2023

Aurojyoti Prusty and Amirtham Rajagopal

This study implements the fourth-order phase field method (PFM) for modeling fracture in brittle materials. The weak form of the fourth-order PFM requires C1 basis functions for…

Abstract

Purpose

This study implements the fourth-order phase field method (PFM) for modeling fracture in brittle materials. The weak form of the fourth-order PFM requires C1 basis functions for the crack evolution scalar field in a finite element framework. To address this, non-Sibsonian type shape functions that are nonpolynomial types based on distance measures, are used in the context of natural neighbor shape functions. The capability and efficiency of this method are studied for modeling cracks.

Design/methodology/approach

The weak form of the fourth-order PFM is derived from two governing equations for finite element modeling. C0 non-Sibsonian shape functions are derived using distance measures on a generalized quad element. Then these shape functions are degree elevated with Bernstein-Bezier (BB) patch to get higher-order continuity (C1) in the shape function. The quad element is divided into several background triangular elements to apply the Gauss-quadrature rule for numerical integration. Both fourth-order and second-order PFMs are implemented in a finite element framework. The efficiency of the interpolation function is studied in terms of convergence and accuracy for capturing crack topology in the fourth-order PFM.

Findings

It is observed that fourth-order PFM has higher accuracy and convergence than second-order PFM using non-Sibsonian type interpolants. The former predicts higher failure loads and failure displacements compared to the second-order model due to the addition of higher-order terms in the energy equation. The fracture pattern is realistic when only the tensile part of the strain energy is taken for fracture evolution. The fracture pattern is also observed in the compressive region when both tensile and compressive energy for crack evolution are taken into account, which is unrealistic. Length scale has a certain specific effect on the failure load of the specimen.

Originality/value

Fourth-order PFM is implemented using C1 non-Sibsonian type of shape functions. The derivation and implementation are carried out for both the second-order and fourth-order PFM. The length scale effect on both models is shown. The better accuracy and convergence rate of the fourth-order PFM over second-order PFM are studied using the current approach. The critical difference between the isotropic phase field and the hybrid phase field approach is also presented to showcase the importance of strain energy decomposition in PFM.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 September 2023

Yazhou Wang, Dehong Luo, Xuelin Zhang, Zhitao Wang, Hui Chen, Xiaobo Zhang, Ningning Xie, Shengwei Mei, Xiaodai Xue, Tong Zhang and Kumar K. Tamma

The purpose of this paper is to design a simple and accurate a-posteriori Lagrangian-based error estimator is developed for the class of backward differentiation formula (BDF…

Abstract

Purpose

The purpose of this paper is to design a simple and accurate a-posteriori Lagrangian-based error estimator is developed for the class of backward differentiation formula (BDF) algorithms with variable time step size, and the adaptive time-stepping in BDF algorithms is demonstrated for efficient time-dependent simulations in fluid flow and heat transfer.

Design/methodology/approach

The Lagrange interpolation polynomial is used to predict the time derivative, and then the accurate primary result is obtained by the Gauss integral, which is applied to evaluate the local error. Not only the generalized formula of the proposed error estimator is presented but also the specific expression for the widely applied BDF1/2/3 is illustrated. Two essential executable MATLAB functions to implement the proposed error estimator are appended for practical applications. Then, the adaptive time-stepping is demonstrated based on the newly proposed error estimator for BDF algorithms.

Findings

The validation tests show that the newly proposed error estimator is accurate such that the effectivity index is always close to unity for both linear and nonlinear problems, and it avoids under/overestimation of the exact local error. The applications for fluid dynamics and coupled fluid flow and heat transfer problems depict the advantage of adaptive time-stepping based on the proposed error estimator for time-dependent simulations.

Originality/value

In contrast to existing error estimators for BDF algorithms, the present work is more accurate for the local error estimation, and it can be readily extended to practical applications in engineering with a few changes to existing codes, contributing to efficient time-dependent simulations in fluid flow and heat transfer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 6 November 2023

Thiago Galdino Balista, Carlos Friedrich Loeffler, Luciano Lara and Webe João Mansur

This work compares the performance of the three boundary element techniques for solving Helmholtz problems: dual reciprocity, multiple reciprocity and direct interpolation. All…

Abstract

Purpose

This work compares the performance of the three boundary element techniques for solving Helmholtz problems: dual reciprocity, multiple reciprocity and direct interpolation. All techniques transform domain integrals into boundary integrals, despite using different principles to reach this purpose.

Design/methodology/approach

Comparisons here performed include the solution of eigenvalue and response by frequency scanning, analyzing many features that are not comprehensively discussed in the literature, as follows: the type of boundary conditions, suitable number of degrees of freedom, modal content, number of primitives in the multiple reciprocity method (MRM) and the requirement of internal interpolation points in techniques that use radial basis functions as dual reciprocity and direct interpolation.

Findings

Among the other aspects, this work can conclude that the solution of the eigenvalue and response problems confirmed the reasonable accuracy of the dual reciprocity boundary element method (DRBEM) only for the calculation of the first natural frequencies. Concerning the direct interpolation boundary element method (DIBEM), its interpolation characteristic allows more accessibility for solving more elaborate problems. Despite requiring a greater number of interpolating internal points, the DIBEM has presented higher-quality results for the eigenvalue and response problems. The MRM results were satisfactory in terms of accuracy just for the low range of frequencies; however, the neglected higher-order primitives impact the accuracy of the dynamic response as a whole.

Originality/value

There are safe alternatives for solving engineering stationary dynamic problems using the boundary element method (BEM), but there are no suitable comparisons between these different techniques. This paper presents the particularities and detailed comparisons approaching the accuracy of the three important BEM techniques, aiming at response and frequency evaluation, which are not found in the specialized literature.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 18 July 2023

Ulrich Gabbert, Stefan Ringwelski, Mathias Würkner and Mario Kittsteiner

Pores and shrink holes are unavoidable defects in the die-casting mass production process which may significantly influence the strength, fatigue and fracture behaviour as well as…

Abstract

Purpose

Pores and shrink holes are unavoidable defects in the die-casting mass production process which may significantly influence the strength, fatigue and fracture behaviour as well as the life span of structures, especially if they are subjected to high static and dynamic loads. Such defects should be considered during the design process or after production, where the defects could be detected with the help of computed tomography (CT) measurements. However, this is usually not done in today's mass production environments. This paper deals with the stress analysis of die-cast structural parts with pores found from CT measurements or that are artificially placed within a structure.

Design/methodology/approach

In this paper the authors illustrate two general methodologies to take into account the porosity of die-cast components in the stress analysis. The detailed geometry of a die-cast part including all discontinuities such as pores and shrink holes can be included via STL data provided by CT measurements. The first approach is a combination of the finite element method (FEM) and the finite cell method (FCM), which extends the FEM if the real geometry cuts finite elements. The FCM is only applied in regions with pores. This procedure has the advantage that all simulations with different pore distributions, real or artificial, can be calculated without changing the base finite element mesh. The second approach includes the pore information as STL data into the original CAD model and creates a new adapted finite element mesh for the simulation. Both methods are compared and evaluated for an industrial problem.

Findings

The STL data of defects which the authors received from CT measurements could not be directly applied without repairing them. Therefore, for FEM applications an appropriate repair procedure is proposed. The first approach, which combines the FEM with the FCM, the authors have realized within the commercial software tool Abaqus. This combination performs well, which is demonstrated for test examples, and is also applied for a complex industrial project. The developed in-house code still has some limitations which restrict broader application in industry. The second pure FEM-based approach works well without limitations but requires increasing computational effort if many different pore distributions are to be investigated.

Originality/value

A new simulation approach which combines the FEM with the FCM has been developed and implemented into the commercial Abaqus FEM software. This approach the authors have applied to simulate a real engineering die-cast structure with pores. This approach could become a preferred way to consider pores in practical applications, where the porosity can be derived either from CT measurements or are artificially adopted for design purposes. The authors have also shown how pores can be considered in the standard FEM analysis as well.

Article
Publication date: 14 November 2023

Mostafa Abbaszadeh, AliReza Bagheri Salec and Shurooq Kamel Abd Al-Khafaji

The space fractional PDEs (SFPDEs) play an important role in the fractional calculus field. Proposing a high-order, stable and flexible numerical procedure for solving SFPDEs is…

Abstract

Purpose

The space fractional PDEs (SFPDEs) play an important role in the fractional calculus field. Proposing a high-order, stable and flexible numerical procedure for solving SFPDEs is the main aim of most researchers. This paper devotes to developing a novel spectral algorithm to solve the FitzHugh–Nagumo models with space fractional derivatives.

Design/methodology/approach

The fractional derivative is defined based upon the Riesz derivative. First, a second-order finite difference formulation is used to approximate the time derivative. Then, the Jacobi spectral collocation method is employed to discrete the spatial variables. On the other hand, authors assume that the approximate solution is a linear combination of special polynomials which are obtained from the Jacobi polynomials, and also there exists Riesz fractional derivative based on the Jacobi polynomials. Also, a reduced order plan, such as proper orthogonal decomposition (POD) method, has been utilized.

Findings

A fast high-order numerical method to decrease the elapsed CPU time has been constructed for solving systems of space fractional PDEs.

Originality/value

The spectral collocation method is combined with the POD idea to solve the system of space-fractional PDEs. The numerical results are acceptable and efficient for the main mathematical model.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 July 2023

Gerasimos G. Rigatos, Masoud Abbaszadeh, Bilal Sari and Jorge Pomares

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated…

Abstract

Purpose

A distinctive feature of tilt-rotor UAVs is that they can be fully actuated, whereas in fixed-angle rotor UAVs (e.g. common-type quadrotors, octorotors, etc.), the associated dynamic model is characterized by underactuation. Because of the existence of more control inputs, in tilt-rotor UAVs, there is more flexibility in the solution of the associated nonlinear control problem. On the other side, the dynamic model of the tilt-rotor UAVs remains nonlinear and multivariable and this imposes difficulty in the drone's controller design. This paper aims to achieve simultaneously precise tracking of trajectories and minimization of energy dissipation by the UAV's rotors. To this end elaborated control methods have to be developed.

Design/methodology/approach

A solution of the nonlinear control problem of tilt-rotor UAVs is attempted using a novel nonlinear optimal control method. This method is characterized by computational simplicity, clear implementation stages and proven global stability properties. At the first stage, approximate linearization is performed on the dynamic model of the tilt-rotor UAV with the use of first-order Taylor series expansion and through the computation of the system's Jacobian matrices. This linearization process is carried out at each sampling instance, around a temporary operating point which is defined by the present value of the tilt-rotor UAV's state vector and by the last sampled value of the control inputs vector. At the second stage, an H-infinity stabilizing controller is designed for the approximately linearized model of the tilt-rotor UAV. To find the feedback gains of the controller, an algebraic Riccati equation is repetitively solved, at each time-step of the control method. Lyapunov stability analysis is used to prove the global stability properties of the control scheme. Moreover, the H-infinity Kalman filter is used as a robust observer so as to enable state estimation-based control. The paper's nonlinear optimal control approach achieves fast and accurate tracking of reference setpoints under moderate variations of the control inputs. Finally, the nonlinear optimal control approach for UAVs with tilting rotors is compared against flatness-based control in successive loops, with the latter method to be also exhibiting satisfactory performance.

Findings

So far, nonlinear model predictive control (NMPC) methods have been of questionable performance in treating the nonlinear optimal control problem for tilt-rotor UAVs because NMPC's convergence to optimum depends often on the empirical selection of parameters while also lacking a global stability proof. In the present paper, a novel nonlinear optimal control method is proposed for solving the nonlinear optimal control problem of tilt rotor UAVs. Firstly, by following the assumption of small tilting angles, the state-space model of the UAV is formulated and conditions of differential flatness are given about it. Next, to implement the nonlinear optimal control method, the dynamic model of the tilt-rotor UAV undergoes approximate linearization at each sampling instance around a temporary operating point which is defined by the present value of the system's state vector and by the last sampled value of the control inputs vector. The linearization process is based on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms from the Taylor series, is considered to be a perturbation that is asymptotically compensated by the robustness of the control scheme. For the linearized model of the UAV, an H-infinity stabilizing feedback controller is designed. To select the feedback gains of the H-infinity controller, an algebraic Riccati equation has to be repetitively solved at each time-step of the control method. The stability properties of the control scheme are analysed with the Lyapunov method.

Research limitations/implications

There are no research limitations in the nonlinear optimal control method for tilt-rotor UAVs. The proposed nonlinear optimal control method achieves fast and accurate tracking of setpoints by all state variables of the tilt-rotor UAV under moderate variations of the control inputs. Compared to past approaches for treating the nonlinear optimal (H-infinity) control problem, the paper's approach is applicable also to dynamical systems which have a non-constant control inputs gain matrix. Furthermore, it uses a new Riccati equation to compute the controller's gains and follows a novel Lyapunov analysis to prove global stability for the control loop.

Practical implications

There are no practical implications in the application of the nonlinear optimal control method for tilt-rotor UAVs. On the contrary, the nonlinear optimal control method is applicable to a wider class of dynamical systems than approaches based on the solution of state-dependent Riccati equations (SDRE). The SDRE approaches can be applied only to dynamical systems which can be transformed to the linear parameter varying (LPV) form. Besides, the nonlinear optimal control method performs better than nonlinear optimal control schemes which use approximation of the solution of the Hamilton–Jacobi–Bellman equation by Galerkin series expansions. The stability properties of the Galerkin series expansion-based optimal control approaches are still unproven.

Social implications

The proposed nonlinear optimal control method is suitable for using in various types of robots, including robotic manipulators and autonomous vehicles. By treating nonlinear control problems for complicated robotic systems, the proposed nonlinear optimal control method can have a positive impact towards economic development. So far the method has been used successfully in (1) industrial robotics: robotic manipulators and networked robotic systems. One can note applications to fully actuated robotic manipulators, redundant manipulators, underactuated manipulators, cranes and load handling systems, time-delayed robotic systems, closed kinematic chain manipulators, flexible-link manipulators and micromanipulators and (2) transportation systems: autonomous vehicles and mobile robots. Besides, one can note applications to two-wheel and unicycle-type vehicles, four-wheel drive vehicles, four-wheel steering vehicles, articulated vehicles, truck and trailer systems, unmanned aerial vehicles, unmanned surface vessels, autonomous underwater vessels and underactuated vessels.

Originality/value

The proposed nonlinear optimal control method is a novel and genuine result and is used for the first time in the dynamic model of tilt-rotor UAVs. The nonlinear optimal control approach exhibits advantages against other control schemes one could have considered for the tilt-rotor UAV dynamics. For instance, (1) compared to the global linearization-based control schemes (such as Lie algebra-based control or flatness-based control), it does not require complicated changes of state variables (diffeomorphisms) and transformation of the system's state-space description. Consequently, it also avoids inverse transformations which may come against singularity problems, (2) compared to NMPC, the proposed nonlinear optimal control method is of proven global stability and the convergence of its iterative search for an optimum does not depend on initialization and controller's parametrization, (3) compared to sliding-mode control and backstepping control the application of the nonlinear optimal control method is not constrained into dynamical systems of a specific state-space form. It is known that unless the controlled system is found in the input–output linearized form, the definition of the associated sliding surfaces is an empirical procedure. Besides, unless the controlled system is found in the backstepping integral (triangular) form, the application of backstepping control is not possible, (4) compared to PID control, the nonlinear optimal control method is of proven global stability and its performance is not dependent on heuristics-based selection of parameters of the controller and (5) compared to multiple-model-based optimal control, the nonlinear optimal control method requires the computation of only one linearization point and the solution of only one Riccati equation.

Details

International Journal of Intelligent Unmanned Systems, vol. 12 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 6 November 2023

Daniel E.S. Rodrigues, Jorge Belinha and Renato Natal Jorge

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value…

Abstract

Purpose

Fused Filament Fabrication (FFF) is an extrusion-based manufacturing process using fused thermoplastics. Despite its low cost, the FFF is not extensively used in high-value industrial sectors mainly due to parts' anisotropy (related to the deposition strategy) and residual stresses (caused by successive heating cycles). Thus, this study aims to investigate the process improvement and the optimization of the printed parts.

Design/methodology/approach

In this work, a meshless technique – the Radial Point Interpolation Method (RPIM) – is used to numerically simulate the viscoplastic extrusion process – the initial phase of the FFF. Unlike the FEM, in meshless methods, there is no pre-established relationship between the nodes so the nodal mesh will not face mesh distortions and the discretization can easily be modified by adding or removing nodes from the initial nodal mesh. The accuracy of the obtained results highlights the importance of using meshless techniques in this field.

Findings

Meshless methods show particular relevance in this topic since the nodes can be distributed to match the layer-by-layer growing condition of the printing process.

Originality/value

Using the flow formulation combined with the heat transfer formulation presented here for the first time within an in-house RPIM code, an algorithm is proposed, implemented and validated for benchmark examples.

Article
Publication date: 27 July 2023

Mas Irfan P. Hidayat, Azzah D. Pramata and Prima P. Airlangga

This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth…

Abstract

Purpose

This study presents finite element (FE) and generalized regression neural network (GRNN) approaches for modeling multiple crack growth problems and predicting crack-growth directions under the influence of multiple crack parameters.

Design/methodology/approach

To determine the crack-growth direction in aluminum specimens, multiple crack parameters representing some degree of crack propagation complexity, including crack length, inclination angle, offset and distance, were examined. FE method models were developed for multiple crack growth simulations. To capture the complex relationships among multiple crack-growth variables, GRNN models were developed as nonlinear regression models. Six input variables and one output variable comprising 65 training and 20 test datasets were established.

Findings

The FE model could conveniently simulate the crack-growth directions. However, several multiple crack parameters could affect the simulation accuracy. The GRNN offers a reliable method for modeling the growth of multiple cracks. Using 76% of the total dataset, the NN model attained an R2 value of 0.985.

Research limitations/implications

The models are presented for static multiple crack growth problems. No material anisotropy is observed.

Practical implications

In practical crack-growth analyses, the NN approach provides significant benefits and savings.

Originality/value

The proposed GRNN model is simple to develop and accurate. Its performance was superior to that of other NN models. This model is also suitable for modeling multiple crack growths with arbitrary geometries. The proposed GRNN model demonstrates its prediction capability with a simpler learning process, thus producing efficient multiple crack growth predictions and assessments.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Book part
Publication date: 23 October 2023

Glenn W. Harrison and Don Ross

Behavioral economics poses a challenge for the welfare evaluation of choices, particularly those that involve risk. It demands that we recognize that the descriptive account of…

Abstract

Behavioral economics poses a challenge for the welfare evaluation of choices, particularly those that involve risk. It demands that we recognize that the descriptive account of behavior toward those choices might not be the ones we were all taught, and still teach, and that subjective risk perceptions might not accord with expert assessments of probabilities. In addition to these challenges, we are faced with the need to jettison naive notions of revealed preferences, according to which every choice by a subject expresses her objective function, as behavioral evidence forces us to confront pervasive inconsistencies and noise in a typical individual’s choice data. A principled account of errant choice must be built into models used for identification and estimation. These challenges demand close attention to the methodological claims often used to justify policy interventions. They also require, we argue, closer attention by economists to relevant contributions from cognitive science. We propose that a quantitative application of the “intentional stance” of Dennett provides a coherent, attractive and general approach to behavioral welfare economics.

Details

Models of Risk Preferences: Descriptive and Normative Challenges
Type: Book
ISBN: 978-1-83797-269-2

Keywords

Article
Publication date: 30 June 2023

Abdul Kareem Abdul Jawwad and Mofid Mahdi

This article aims to investigate and model the effects of welding-generated thermal cycle on the resulting residual stress distribution and its role in the initiation and…

Abstract

Purpose

This article aims to investigate and model the effects of welding-generated thermal cycle on the resulting residual stress distribution and its role in the initiation and propagation of fatigue failure in thick shaft sections.

Design/methodology/approach

Experimental and numerical techniques were applied in the present study to explore the relationship(s) between welding residual-stress distribution and fatigue failure characteristics in a hydropower generator shaft. Experimental techniques included stereomicroscopy, optical and scanning electron microscopy (SEM), chemical analysis and mechanical testing. Finite element modelling (FEM) was used to model the shaft welding cycle in terms of thermal (temperature) history and the associated development of residual stresses within the weld joint.

Findings

Experimental analyses have confirmed the suitability of the used material for the intended application and confirmed the failure mode to be low cycle fatigue. The observed failure characteristics, however, did not match with the applied loading in terms of design stress levels, directionality and expected crack imitation site(s). FEM results have revealed the presence of a sharp stress peak in excess of 630 MPa (about 74% of material's yield strength) around weld start point and a non-uniform residual stress distribution in both the circumferential and through-thickness directions. The present results have shown very close matching between FEM results and observed failure characteristics.

Practical implications

The present article considers an actual industrial case of a hydropower generator shaft failure. Present results are valuable in providing insight information regarding such failures as well as some preventive design and fabrication measures for the hydropower and other power generation and transmission sector.

Originality/value

The presence of the aforementioned stress peak around welding start/end location and the non-uniform distribution of residual-stress field are in contrast to almost all published results based on some uniformity assumptions. The present FEM results were, however, the only stress distribution scenario capable of explaining the failure considered in the present research.

Details

Multidiscipline Modeling in Materials and Structures, vol. 19 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

1 – 10 of 40