Search results

1 – 10 of 13
Open Access
Article
Publication date: 14 December 2021

Łukasz Knypiński and Frédéric Gillon

The purpose of this paper is to develop an algorithm and software for determining the size of a line-start permanent magnet synchronous motor (LSPMSMs) based on its optimization.

Abstract

Purpose

The purpose of this paper is to develop an algorithm and software for determining the size of a line-start permanent magnet synchronous motor (LSPMSMs) based on its optimization.

Design/methodology/approach

The software consists of an optimization procedure that cooperates with a FEM model to provide the desired behavior of the motor under consideration. The proposed improved version of the genetic algorithm has modifications enabling efficient optimization of LSPMSMs. The objective function consists of three important functional parameters describing the designed machine. The 2-D field-circuit mathematical model of the dynamics operation of the LSPMSMs consists of transient electromagnetic field equations, equations describing electric windings and mechanical motion equations. The model has been developed in the ANSYS Maxwell environment.

Findings

In this proposed approach, the set of design variables contains the variables describing the stator and rotor structure. The improved procedure of the optimization algorithm makes it possible to find an optimal motor structure with correct synchronization properties. The proposed modifications make the optimization procedure faster and more

Originality/value

This proposed approach can be successfully applied to solve the design problems of LSPMSMs.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 41 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 November 2020

Jérôme Marault, Abdelmounaïm Tounzi, Frédéric Gillon and Michel Hecquet

For a given rotor, the study of the impact of stator MMF from different winding distributions is usually carried out using analytical model under some simplifying hypotheses to…

Abstract

Purpose

For a given rotor, the study of the impact of stator MMF from different winding distributions is usually carried out using analytical model under some simplifying hypotheses to limit time computation. To get more accurate results, finite element model is thus more suitable. However, testing different combinations of stator windings with the same rotor can be tedious when considering the stator slots. Indeed, this introduces mesh constraint, reluctance variation of the air gap and possibly taking into account of the connection between stator coils. To avoid this, a current sheet supplied such to represent the stator MMF and spread all around the inner slotless stator surface can be used. In addition, such an approach can be very useful to didactically assess the effect of each winding space harmonic on machine performance separately. The purpose of this paper is to use a current sheet coupled to an external analytical tool in order to easily test different windings or to quantify the effect of a given spatial harmonic of the winding.

Design/methodology/approach

In the proposed approach, the current sheet supply is obtained from an analytical tool that allows determining the spatiotemporal stator MMF of any winding considered. Moreover, stator teeth height is not modelled, and only the thickness of the stator yoke is considered along with the same air gap thickness. Results with the proposed approach are compared to the real stator modelling for two different winding configurations. Last, linear and non-linear magnetic material behaviours are investigated to validate the proposed approach in term of magnetic distribution.

Findings

For both studied cases, results in term of local and global physical quantities show good agreement between the real stator modelling and the proposed approach.

Originality/value

Current sheet is used with finite element model to study the inherent effect of different winding configurations on local and global physical quantities of an AC electrical machine. The proposed approach avoids the constraints in terms of stator slot geometry and electrical circuit definition. This is very useful to quickly test different winding configurations or to isolate a specific winding space harmonic to quantify its effect on the electrical performances. This cannot be performed using classical modelling as all space harmonics are taken into account.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 25 September 2018

Bilquis Bibi Safoorah Mohamodhosen, Frederic Gillon, Mounaim Tounzi and Loïc Chevallier

The purpose of this paper is to propose a methodology to seek the optimal topology of electromagnetic devices using the density method while taking into account the non-linear…

Abstract

Purpose

The purpose of this paper is to propose a methodology to seek the optimal topology of electromagnetic devices using the density method while taking into account the non-linear behaviour of ferromagnetic materials. The tools and methods used are detailed and applied to a three-dimensional (3D) electromagnet for analysis and validation. Resulting topologies with and without the non-linear behaviour are investigated.

Design/methodology/approach

The polynomial mapping is used with the density method for material distribution in the optimisation domain. To consider the non-linear behaviour of the materials, an analytical approximation based on the Marrocco equation is used and combined with the polynomial mapping to solve the problem. Furthermore, to prevent the occurrence of intermediate materials, a weighted sum of objectives is used in the optimisation problem to eliminate these undesired materials.

Findings

Taking into account the non-linear materials behaviour and 3D model during topology optimisation (TO) is important, as it produces more physically feasible and coherent results. Moreover, the use of a weighted sum of objectives to eliminate intermediate materials increases the number of evaluations to reach the final solution, but it is efficient.

Practical implications

Considering non-linear materials behaviour yields results closer to reality, and physical feasibility of structures is more obvious in absence of intermediate materials.

Originality/value

This work tackles an obstacle of TO in electromagnetism which is often overlooked in literature, that is, non-linear behaviour of ferromagnetic materials by proposing a methodology.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 March 2018

Jinlin Gong, Frédéric Gillon and Nicolas Bracikowski

This paper aims to investigate three low-evaluation-budget optimization techniques: output space mapping (OSM), manifold mapping (MM) and Kriging-OSM. Kriging-OSM is an original…

Abstract

Purpose

This paper aims to investigate three low-evaluation-budget optimization techniques: output space mapping (OSM), manifold mapping (MM) and Kriging-OSM. Kriging-OSM is an original approach having high-order mapping.

Design/methodology/approach

The electromagnetic device to be optimally sized is a five-phase linear induction motor, represented through two levels of modeling: coarse (Kriging model) and fine.The optimization comparison of the three techniques on the five-phase linear induction motor is discussed.

Findings

The optimization results show that the OSM takes more time and iteration to converge the optimal solution compared to MM and Kriging-OSM. This is mainly because of the poor quality of the initial Kriging model. In the case of a high-quality coarse model, the OSM technique would show its domination over the other two techniques. In the case of poor quality of coarse model, MM and Kriging-OSM techniques are more efficient to converge to the accurate optimum.

Originality/value

Kriging-OSM is an original approach having high-order mapping. An advantage of this new technique consists in its capability of providing a sufficiently accurate model for each objective and constraint function and makes the coarse model converge toward the fine model more effectively.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 17 March 2016

Pierre Caillard, Frederic Gillon, Sid-Ali Randi and Noelle Janiaud

The purpose of this paper is to compare two design optimization architectures for the optimal design of a complex device that integrates simultaneously the sizing of system…

Abstract

Purpose

The purpose of this paper is to compare two design optimization architectures for the optimal design of a complex device that integrates simultaneously the sizing of system components and the control strategy for increasing the energetic performances. The considered benchmark is a battery electric passenger car.

Design/methodology/approach

The optimal design of an electric vehicle powertrain is addressed within this paper, with regards to performances and range. The objectives and constraints require simulating several vehicle operating points, each of them has one degree of freedom for the electric machine control. This control is usually determined separately for each point with a sampling or an optimization loop resulting in an architecture called bi-level. In some conditions, the control variables can be transferred to the design optimization loop by suppressing the inner loop to get a mono-level formulation. The paper describes in which conditions this transformation can be done and compares the results for both architectures.

Findings

Results show a calculation time divided by more than 30 for the mono-level architecture compared to the natural bi-level on the study case. Even with the same models and optimization algorithms, the structure of the problem should be studied to improve the results, especially if computational cost is high.

Originality/value

The compared architectures bring new guidelines in the field optimal design for electric powertrains. The way to formulate a design optimization with some inner degrees of freedom can have a significant impact on computing time and on the problem understanding

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 35 no. 3
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 29 April 2014

Imen Amdouni, Lilia El Amraoui, Frédéric Gillon, Mohamed Benrejeb and Pascal Brochet

– The purpose of this paper is to develop an optimal approach for optimizing the dynamic behavior of incremental linear actuators.

Abstract

Purpose

The purpose of this paper is to develop an optimal approach for optimizing the dynamic behavior of incremental linear actuators.

Design/methodology/approach

First, a parameterized design model is built. Second, a dynamic model is implemented. This model takes into account the thrust force computed from a finite element model. Finally, the multiobjective optimization approach is applied to the dynamic model to optimize control as well as design parameters.

Findings

The Pareto front resulting from the optimization approach (or the parallel optimization approach,) is better than the Pareto, which is obtained from the only application of MultiObjective Genetic Algorithm (MOGA) method (or parallel MOGA with the same number of optimization approach objective function evaluations). The only use of MOGA can reach the region near an optimal Pareto front, but it consumes more computing time than the multiobjective optimization approach. At each flowchart stage, parallelization leads to a significant reduction of computing time which is halved when using two-core machine.

Originality/value

In order to solve the multiobjective problem, a hybrid algorithm based on MOGA is developed.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 May 2012

Jinlin Gong, Alexandru Claudiu Berbecea, Frédéric Gillon and Pascal Brochet

The purpose of this paper is to present a low evaluation budget optimization strategy for expensive simulation models, such as 3D finite element models.

Abstract

Purpose

The purpose of this paper is to present a low evaluation budget optimization strategy for expensive simulation models, such as 3D finite element models.

Design/methodology/approach

A 3D finite element electromagnetic model and a thermal model are developed and coupled in order to simulate the linear induction motor (LIM) to be conceived. Using the 3D finite element coupling model as a simulation model, a multi‐objective optimization with a progressive improvement of a surrogate model is proposed. The proposed surrogate model is progressively improved using an infill set selection strategy which is well‐suited for the parallel evaluation of the 3D finite element coupling model on an eight‐core machine, with a maximum of four models running in parallel.

Findings

The proposed strategy allows for a significant gain of optimization time. The 3D Pareto front composed of the finite element model evaluation results is obtained, which provides the designer with a set of optimal trade‐off solutions for him/her to make the final decision for the engineering design.

Originality/value

An infill set selection strategy is proposed, which allows the parallel evaluation of the finite element model, and at the same time guides the progressive construction of an improved surrogate model during the multi‐objective optimization run. The paper may stand as a good reference for researchers/engineering designers who have to deal with optimal design problems implying costly simulation models.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 7 September 2012

Dmitry Samarkanov, Frédéric Gillon, Pascal Brochet and Daniel Laloy

The purpose of this paper is to present two optimization methodologies based on interval branch‐and‐bound algorithm.

Abstract

Purpose

The purpose of this paper is to present two optimization methodologies based on interval branch‐and‐bound algorithm.

Design/methodology/approach

These techniques decrease the total time of computation, even in spite of discrete nature of some of the design variables. Computational experiments performed on multivariable optimization problem reveal great accuracy and technical validity of developed approaches. As an example, the optimal design of the induction machine (IM) was treated, where the aim was to find the set of the most efficient and, at the same time, cheapest in the manufacturing configurations.

Findings

In this paper, two approaches were developed for resolving the problem of optimal design of IM with discrete variables. The strategy of constructing the meta‐models is utilized and put in practice. The methods show relatively high efficiency and robustness of obtained results.

Originality/value

These approaches are the core technics of the developed industrial application, which help identify the set of optimal configurations of IM with the criteria of optimality such as total cost of manufacturing and the efficiency of IM.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 April 2014

Alexandru C. Berbecea, Frédéric Gillon and Pascal Brochet

The purpose of this paper is to present an application of a multidisciplinary multi-level design optimization methodology for the optimal design of a complex device from the field…

Abstract

Purpose

The purpose of this paper is to present an application of a multidisciplinary multi-level design optimization methodology for the optimal design of a complex device from the field of electrical engineering throughout discipline-based decomposition. The considered benchmark is a single-phase low voltage safety isolation transformer.

Design/methodology/approach

The multidisciplinary optimization of a safety isolation transformer is addressed within this paper. The bi-level collaborative optimization (CO) strategy is employed to coordinate the optimization of the different disciplinary analytical models of the transformer (no-load and full-load electromagnetic models and thermal model). The results represent the joint decision of the three distinct disciplinary optimizers involved in the design process, under the coordination of the CO's master optimizer. In order to validate the proposed approach, the results are compared to those obtained using a classical single-level optimization method – sequential quadratic programming – carried out using a multidisciplinary feasible formulation for handling the evaluation of the coupling model of the transformer.

Findings

Results show a good convergence of the CO process with the analytical modeling of the transformer, with a reduced number of coordination iterations. However, a relatively important number of disciplinary models evaluations were required by the local optimizers.

Originality/value

The CO multi-level methodology represents a new approach in the field of electrical engineering. The advantage of this approach consists in that it integrates decisions from different teams of specialists within the optimal design process of complex systems and all exchanges are managed within a unique coordination process.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 April 2014

Jinlin Gong, Bassel Aslan, Frédéric Gillon and Eric Semail

The purpose of this paper is to apply some surrogate-assisted optimization techniques in order to improve the performances of a five-phase permanent magnet machine in the context…

Abstract

Purpose

The purpose of this paper is to apply some surrogate-assisted optimization techniques in order to improve the performances of a five-phase permanent magnet machine in the context of a complex model requiring computation time.

Design/methodology/approach

An optimal control of four independent currents is proposed in order to minimize the total losses with the respect of functioning constraints. Moreover, some geometrical parameters are added to the optimization process allowing a co-design between control and dimensioning.

Findings

The optimization results prove the remarkable effect of using the freedom degree offered by a five-phase structure on iron and magnets losses. The performances of the five-phase machine with concentrated windings are notably improved at high speed (16,000 rpm).

Originality/value

The effectiveness of the method allows solving the challenge which consists in taking into account inside the control strategy the eddy-current losses in magnets and iron. In fact, magnet losses are a critical point to protect the machine from demagnetization in flux-weakening region.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 13