Search results

1 – 10 of over 14000
Article
Publication date: 4 May 2012

Ramzi Ben Ayed and Stéphane Brisset

The purpose of this paper is to investigate the use of multidisciplinary optimization (MDO) formulations within spacemapping techniques in order to reduce their computing time.

Abstract

Purpose

The purpose of this paper is to investigate the use of multidisciplinary optimization (MDO) formulations within spacemapping techniques in order to reduce their computing time.

Design/methodology/approach

The aim of this work is to quantify the interest of using MDO formulations within space mapping techniques. A comparison of three MDO formulations is carried out in a short time by using an analytical model of a safety transformer. This comparison reveals the advantage of two formulations in terms of robustness and computing time among the three MDO formulations. Then, the best formulations are investigated within output space mapping, using both analytical and FE models of the transformer.

Findings

A major computing time gain equal to 5.5 is achieved using the Individual Disciplinary Feasibility formulation within the output spacemapping technique in the case of the safety transformer.

Originality/value

The MultiDisciplinary Feasibility formulation is the common formulation used within spacemapping technique because it is the most conventional way to perform MDO. The originality of this paper is to investigate the Individual Disciplinary Feasibility formulation within output spacemapping technique in order to allow the parallelization of calculation and to achieve a major reduction of computing time.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 4 May 2012

Stéphane Vivier, Didier Lemoine and Guy Friedrich

The purpose of this paper is to focus on the implementation and management of multi‐objective optimizations, with the help of heuristic algorithms such as space mapping methods.

Abstract

Purpose

The purpose of this paper is to focus on the implementation and management of multi‐objective optimizations, with the help of heuristic algorithms such as space mapping methods.

Design/methodology/approach

The authors consider the design of electromechanical actuators by the use of mathematical and computer means. Experiments are then virtual, because they correspond to numerical simulations. Dimensioning is then ensured by an optimization procedure of the space mapping type, whose main characteristic consists in using two models of the same size actuator (instead of a single one for classical optimization methods). Moreover, one considers here that multiple outputs are defined: this defines a multi‐objective optimization. This paper proposes several techniques making it possible to include the definition of multiple objectives to be fulfilled as part of an output space mapping optimization process.

Findings

The proposed approaches make it possible to stabilize and accelerate the convergence of multi‐objective optimizations performed by space mapping. This is illustrated by the example of the dimensioning of a resonant linear electromagnetic actuator.

Originality/value

The approach presented in the paper is original because it allows finding of a solution to the multi‐objective problem, without building any Pareto front, and most effectively by improving the convergent behavior of the optimization algorithm.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 11 September 2009

Laurentiu Encica, Johannes Paulides and Elena Lomonova

The spacemapping (SM) optimization technique, with its input, implicit or output mapping‐based implementations, provides a basis for computationally efficient engineering…

Abstract

Purpose

The spacemapping (SM) optimization technique, with its input, implicit or output mapping‐based implementations, provides a basis for computationally efficient engineering optimization. Various algorithms and design optimization problems, related to microwave devices, antennas and electronic circuits, are presented in numerous publications. However, a new application area for SM optimization is currently expanding, i.e. the design of electromechanical actuators. The purpose of this paper is to present an overview of the recent developments.

Design/methodology/approach

New algorithm variants and their application to design problems in electromechanics and related fields are briefly summarized.

Findings

The paper finds that SM optimization offers a significant speed‐up of the optimization procedures for the design of electromechanical actuators. Its true potential in the area of magnetic systems and actuator design is still rather unexplored.

Originality/value

This overview is complementary to the previous published reviews and shows that the application of SM optimization has also extended to the design of electromechanical devices.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 April 2014

Maya Hage Hassan, Ghislain Remy, Guillaume Krebs and Claude Marchand

The purpose of this paper is to set a relation through adaptive multi-level optimization between two physical models with different accuracies; a fast coarse model and a fine time…

Abstract

Purpose

The purpose of this paper is to set a relation through adaptive multi-level optimization between two physical models with different accuracies; a fast coarse model and a fine time consuming model. The use case is the optimization of a permanent magnet axial flux electrical machine.

Design/methodology/approach

The paper opted to set the relation between the two models through radial basis function (RBF). The optimization is held on the coarse model. The deduced solutions are used to evaluate the fine model. Thus, through an iterative process a residue RBF between models responses is built to endorse an adaptive correction.

Findings

The paper shows how the use of a residue function permits, to diminish optimization time, to reduce the misalignment between the two models in a structured strategy and to find optimum solution of the fine model based on the optimization of the coarse one. The paper also provides comparison between the proposed methodology and the traditional approach (output space mapping (OSM)) and shows that in case of large misalignment between models the OSM fails.

Originality/value

This paper proposes an original methodology in electromechanical design based on building a surrogate model by means of RBF on the bulk of existing physical model.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 March 2018

Jinlin Gong, Frédéric Gillon and Nicolas Bracikowski

This paper aims to investigate three low-evaluation-budget optimization techniques: output space mapping (OSM), manifold mapping (MM) and Kriging-OSM. Kriging-OSM is an original…

Abstract

Purpose

This paper aims to investigate three low-evaluation-budget optimization techniques: output space mapping (OSM), manifold mapping (MM) and Kriging-OSM. Kriging-OSM is an original approach having high-order mapping.

Design/methodology/approach

The electromagnetic device to be optimally sized is a five-phase linear induction motor, represented through two levels of modeling: coarse (Kriging model) and fine.The optimization comparison of the three techniques on the five-phase linear induction motor is discussed.

Findings

The optimization results show that the OSM takes more time and iteration to converge the optimal solution compared to MM and Kriging-OSM. This is mainly because of the poor quality of the initial Kriging model. In the case of a high-quality coarse model, the OSM technique would show its domination over the other two techniques. In the case of poor quality of coarse model, MM and Kriging-OSM techniques are more efficient to converge to the accurate optimum.

Originality/value

Kriging-OSM is an original approach having high-order mapping. An advantage of this new technique consists in its capability of providing a sufficiently accurate model for each objective and constraint function and makes the coarse model converge toward the fine model more effectively.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 29 April 2014

Ramzi Ben Ayed and Stéphane Brisset

– The aim of this paper is to reduce the evaluations number of the fine model within the output space mapping (OSM) technique in order to reduce their computing time.

Abstract

Purpose

The aim of this paper is to reduce the evaluations number of the fine model within the output space mapping (OSM) technique in order to reduce their computing time.

Design/methodology/approach

In this paper, n-level OSM is proposed and expected to be even faster than the conventional OSM. The proposed algorithm takes advantages of the availability of n models of the device to optimize, each of them representing an optimal trade-off between the model error and its computation time. Models with intermediate characteristics between the coarse and fine models are inserted within the proposed algorithm to reduce the number of evaluations of the consuming time model and then the computing time. The advantages of the algorithm are highlighted on the optimization problem of superconducting magnetic energy storage (SMES).

Findings

A major computing time gain equals to three is achieved using the n-level OSM algorithm instead of the conventional OSM technique on the optimization problem of SMES.

Originality/value

The originality of this paper is to investigate several models with different granularities within OSM algorithm in order to reduce its computing time without decreasing the performance of the conventional strategy.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 March 2018

Stéphane Vivier

This paper aims to introduce an original application of the corrected response surface method (CRSM) in the context of the optimal design of a permanent magnet synchronous machine…

Abstract

Purpose

This paper aims to introduce an original application of the corrected response surface method (CRSM) in the context of the optimal design of a permanent magnet synchronous machine used as an integrated starter generator. This method makes it possible to carry out this design in a very efficient manner, in comparison with conventional optimization approaches.

Design/methodology/approach

The search for optimal conditions is achieved by the joint use of two multi-physics models of the machine to be optimized. The former models most finely the physical functioning of the machine; it is called “fine model”. The second model describes the same physical phenomena as the fine model but must be much quicker to evaluate. Thus, to minimize its evaluation time, it is necessary to simplify it considerably. It is called “coarse model”. The lightness of the coarse model allows it to be used intensively by conventional optimization algorithms. On the other hand, the fine reference model makes it possible to recalibrate the results obtained from the coarse model at any instant, and mainly at the end of each classical optimization. The difference in definition between fine and coarse models implies that these two models do not give the same output values for the same input configuration. The approach described in this study proposes to correct the values of the coarse model outputs by constructing an adjustment (correcting) response surface. This gives the name to this method. It then becomes possible to have the entire load of the optimization carried over to the coarse model adjusted by the addition of this correction response surface.

Findings

The application of this method shows satisfactory results, in particular in comparison with those obtained with a traditional optimization approach based on a single (fine) model. It thus appears that the approach by CRSM makes it possible to converge much more quickly toward the optimal configurations. Also, the use of response surfaces for optimization makes it possible to capitalize the modeling data, thus making it possible to reuse them, if necessary, for subsequent optimal design studies. Numerous tests show that this approach is relatively robust to the variations of many important functioning parameters.

Originality/value

The CRSM technique is an indirect multi-model optimization method. This paper presents the application of this relatively undeveloped optimization approach, combining the features and benefits of (Indirect) efficient global optimization techniques and (multi-model) space mapping methods.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 August 2019

Anand Amrit and Leifur Leifsson

The purpose of this work is to apply and compare surrogate-assisted and multi-fidelity, multi-objective optimization (MOO) algorithms to simulation-based aerodynamic design…

Abstract

Purpose

The purpose of this work is to apply and compare surrogate-assisted and multi-fidelity, multi-objective optimization (MOO) algorithms to simulation-based aerodynamic design exploration.

Design/methodology/approach

The three algorithms for multi-objective aerodynamic optimization compared in this work are the combination of evolutionary algorithms, design space reduction and surrogate models, the multi-fidelity point-by-point Pareto set identification and the multi-fidelity sequential domain patching (SDP) Pareto set identification. The algorithms are applied to three cases, namely, an analytical test case, the design of transonic airfoil shapes and the design of subsonic wing shapes, and are evaluated based on the resulting best possible trade-offs and the computational overhead.

Findings

The results show that all three algorithms yield comparable best possible trade-offs for all the test cases. For the aerodynamic test cases, the multi-fidelity Pareto set identification algorithms outperform the surrogate-assisted evolutionary algorithm by up to 50 per cent in terms of cost. Furthermore, the point-by-point algorithm is around 27 per cent more efficient than the SDP algorithm.

Originality/value

The novelty of this work includes the first applications of the SDP algorithm to multi-fidelity aerodynamic design exploration, the first comparison of these multi-fidelity MOO algorithms and new results of a complex simulation-based multi-objective aerodynamic design of subsonic wing shapes involving two conflicting criteria, several nonlinear constraints and over ten design variables.

Article
Publication date: 17 October 2018

Andrew Thelen, Leifur Leifsson, Anupam Sharma and Slawomir Koziel

Dual-rotor wind turbines (DRWTs) are a novel type of wind turbines that can capture more power than their single-rotor counterparts. Because their surrounding flow fields are…

Abstract

Purpose

Dual-rotor wind turbines (DRWTs) are a novel type of wind turbines that can capture more power than their single-rotor counterparts. Because their surrounding flow fields are complex, evaluating a DRWT design requires accurate predictive simulations, which incur high computational costs. Currently, there does not exist a design optimization framework for DRWTs. Since the design optimization of DRWTs requires numerous model evaluations, the purpose of this paper is to identify computationally efficient design approaches.

Design/methodology/approach

Several algorithms are compared for the design optimization of DRWTs. The algorithms vary widely in approaches and include a direct derivative-free method, as well as three surrogate-based optimization methods, two approximation-based approaches and one variable-fidelity approach with coarse discretization low-fidelity models.

Findings

The proposed variable-fidelity method required significantly lower computational cost than the derivative-free and approximation-based methods. Large computational savings come from using the time-consuming high-fidelity simulations sparingly and performing the majority of the design space search using the fast variable-fidelity models.

Originality/value

Due the complex simulations and the large number of designable parameters, the design of DRWTs require the use of numerical optimization algorithms. This work presents a novel and efficient design optimization framework for DRWTs using computationally intensive simulations and variable-fidelity optimization techniques.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 August 2019

Slawomir Koziel and Adrian Bekasiewicz

The purpose of this paper is to investigate the strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup.

Abstract

Purpose

The purpose of this paper is to investigate the strategies and algorithms for expedited design optimization of microwave and antenna structures in multi-objective setup.

Design/methodology/approach

Formulation of the multi-objective design problem-oriented toward execution of the population-based metaheuristic algorithm within the segmented search space is investigated. Described algorithmic framework exploits variable fidelity modeling, physics- and approximation-based representation of the structure and model correction techniques. The considered approach is suitable for handling various problems pertinent to the design of microwave and antenna structures. Numerical case studies are provided demonstrating the feasibility of the segmentation-based framework for the design of real-world structures in setups with two and three objectives.

Findings

Formulation of appropriate design problem enables identification of the search space region containing Pareto front, which can be further divided into a set of compartments characterized by small combined volume. Approximation model of each segment can be constructed using a small number of training samples and then optimized, at a negligible computational cost, using population-based metaheuristics. Introduction of segmentation mechanism to multi-objective design framework is important to facilitate low-cost optimization of many-parameter structures represented by numerically expensive computational models. Further reduction of the design cost can be achieved by enforcing equal-volumes of the search space segments.

Research limitations/implications

The study summarizes recent advances in low-cost multi-objective design of microwave and antenna structures. The investigated techniques exceed capabilities of conventional design approaches involving direct evaluation of physics-based models for determination of trade-offs between the design objectives, particularly in terms of reliability and reduction of the computational cost. Studies on the scalability of segmentation mechanism indicate that computational benefits of the approach decrease with the number of search space segments.

Originality/value

The proposed design framework proved useful for the rapid multi-objective design of microwave and antenna structures characterized by complex and multi-parameter topologies, which is extremely challenging when using conventional methods driven by population-based metaheuristics algorithms. To the authors knowledge, this is the first work that summarizes segmentation-based approaches to multi-objective optimization of microwave and antenna components.

1 – 10 of over 14000