Search results

21 – 30 of over 28000
Article
Publication date: 2 October 2007

W. Ochoński

This paper seeks to present some new designs of sliding bearings lubricated with magnetic fluids (ferrofluids) and the possibility of using them in modern bearing technology, in…

1416

Abstract

Purpose

This paper seeks to present some new designs of sliding bearings lubricated with magnetic fluids (ferrofluids) and the possibility of using them in modern bearing technology, in new computer and audiovisual equipment among others.

Design/methodology/approach

The paper presents new designs of journal, thrust and journal‐thrust sliding bearings lubricated and sealed with magnetic fluids such as: magnetic fluid bearing bushing made of magnetizable material, pivot bearings with porous sleeve impregnated with ferrofluid, self‐aligning bearings, hydrodynamic ferrofluid bearings with spiral and herringbone grooves structure are presented. Moreover, examples are shown of applications in modern bearing technology.

Findings

The paper provides information about new designs of magnetic fluid sliding bearings assemblies and gives the main advantages of these bearings over conventional ball bearings, such as extremely low non‐repetitive run‐out (high‐accuracy of rotation), good damping and quietness of operation, maintenance free service and high reliability.

Originality/value

This paper offers some new designs of compact, low friction and self‐contained magnetic fluid sliding bearings and points up their practical applications.

Details

Industrial Lubrication and Tribology, vol. 59 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 March 2004

K.N. Seetharamu, G.A. Quadir, Z.A. Zainal and G.M. Krishnan

Heat exchangers are devices for exchanging energy between two or more fluids. They find applications in various industries like power, process, electronics, refining, cryogenics…

Abstract

Heat exchangers are devices for exchanging energy between two or more fluids. They find applications in various industries like power, process, electronics, refining, cryogenics, chemicals, metals and manufacturing sector. Even though heat exchanger designs have been reported quite extensively, they are generally limited to steady‐state performance, single phase fluids, a few of the many possible flow arrangements and only two fluid heat exchangers. While these designs encompass the majority of the heat exchanger applications, there are some designs, which involve several fluids such as in cryogenics or fault‐tolerant heat exchangers. The governing differential equations for a three‐fluid heat exchanger are written based on the conservation of energy. The finite element method is used to solve the governing differential equations along with the appropriate boundary conditions. The case of a Buoyonet heat exchanger (used for pasteurizing milk) is analysed and the results are compared with the analytical solution available in the literature. The Buoyonet heat exchanger, treated as a three‐fluid heat exchanger is also analysed. The effect of heat loss to the ambient from a parallel flow double pipe heat exchanger is also investigated and the results are compared with those available in the literature. The results are presented both in terms of the temperature distribution along the length of the heat exchanger and the variation of effectiveness with NTU. The methodology presented in this paper can be extended to heat exchangers with any number of streams and any combination of the flow arrangements.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 14 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1999

Chongbin Zhao, B.E. Hobbs, K. Baxter, H.B. Mühlhaus and A. Ord

We present a numerical methodology for the study of convective pore‐fluid, thermal and mass flow in fluid‐saturated porous rock basins. In particular, we investigate the…

Abstract

We present a numerical methodology for the study of convective pore‐fluid, thermal and mass flow in fluid‐saturated porous rock basins. In particular, we investigate the occurrence and distribution pattern of temperature gradient driven convective pore‐fluid flow and hydrocarbon transport in the Australian North West Shelf basin. The related numerical results have demonstrated that: (1) The finite element method combined with the progressive asymptotic approach procedure is a useful tool for dealing with temperature gradient driven pore‐fluid flow and mass transport in fluid‐saturated hydrothermal basins; (2) Convective pore‐fluid flow generally becomes focused in more permeable layers, especially when the layers are thick enough to accommodate the appropriate convective cells; (3) Large dislocation of strata has a significant influence on the distribution patterns of convective pore‐fluid flow, thermal flow and hydrocarbon transport in the North West Shelf basin; (4) As a direct consequence of the formation of convective pore‐fluid cells, the hydrocarbon concentration is highly localized in the range bounded by two major faults in the basin.

Details

Engineering Computations, vol. 16 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 May 2022

Cheng Zhang, Jianfeng Zhou and Xiannian Meng

In the magnetorheological fluid (MRF) sealing, a large amount of friction heat is generated in the fluid film with micron thickness due to the viscosity dissipation, which leads…

Abstract

Purpose

In the magnetorheological fluid (MRF) sealing, a large amount of friction heat is generated in the fluid film with micron thickness due to the viscosity dissipation, which leads to seal failure and MRF deterioration. The purpose of this study is to investigate the mechanism of temperature rise of MRF film under the action of the three-field coupling of the flow field, temperature field and magnetic field.

Design/methodology/approach

The fluid film was simplified as a Couette flow in this work to simulate the temperature change in the sealing fluid film under different working conditions. The corresponding experiment for test the temperature rise was also carried out, and the temperature of the characteristic point of the stationary ring was measured to validate the model.

Findings

The results show that the temperature rise is mainly affected by the rotational speed, magnetic field strength and fluid film thickness. The magnetic field enhances the convective heat transfer in the MRF film. The thinner the fluid film, the more frictional heat generated. The MRF film reaches its maximum temperature at the contact with the end face of rotating ring due to frictional heat.

Originality/value

A method for temperature rise analysis of MRF fluid sealing films based on Couette flow is established. It is helpful for the study of liquid film frictional heat in MRF seals.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 March 2024

Atifa Kanwal, Ambreen A. Khan, Sadiq M. Sait and R. Ellahi

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid

Abstract

Purpose

The particle distribution in a fluid is mostly not homogeneous. The inhomogeneous dispersion of solid particles affects the velocity profile as well as the heat transfer of fluid. This study aims to highlight the effects of varying density of particles in a fluid. The fluid flows through a wavy curved passage under an applied magnetic field. Heat transfer is discussed with variable thermal conductivity.

Design/methodology/approach

The mathematical model of the problem consists of coupled differential equations, simplified using stream functions. The results of the time flow rate for fluid and solid granules have been derived numerically.

Findings

The fluid and dust particle velocity profiles are being presented graphically to analyze the effects of density of solid particles, magnetohydrodynamics, curvature and slip parameters. Heat transfer analysis is also performed for magnetic parameter, density of dust particles, variable thermal conductivity, slip parameter and curvature. As the number of particles in the fluid increases, heat conduction becomes slow through the fluid. Increase in temperature distribution is noticed as variable thermal conductivity parameter grows. The discussion of variable thermal conductivity is of great concern as many biological treatments and optimization of thermal energy storage system’s performance require precise measurement of a heat transfer fluid’s thermal conductivity.

Originality/value

This study of heat transfer with inhomogeneous distribution of the particles in a fluid has not yet been reported.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 11 March 2024

Su Yong and Gong Wu-Qi

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in…

39

Abstract

Purpose

Abnormal vibrations often occur in the liquid oxygen kerosene transmission pipelines of rocket engines, which seriously threaten their safety. Improper handling can result in failed rocket launches and significant economic losses. Therefore, this paper aims to examine vibrations in transmission pipelines.

Design/methodology/approach

In this study, a three-dimensional high-pressure pipeline model composed of corrugated pipes, multi-section bent pipes, and other auxiliary structures was established. The fluid–solid coupling method was used to analyse vibration characteristics of the pipeline under various external excitations. The simulation results were visualised using MATLAB, and their validity was verified via a thermal test.

Findings

In this study, the vibration mechanism of a complex high-pressure pipeline was examined via a visualisation method. The results showed that the low-frequency vibration of the pipe was caused by fluid self-excited pressure pulsation, whereas the vibration of the engine system caused a high-frequency vibration of the pipeline. The excitation of external pressure pulses did not significantly affect the vibrations of the pipelines. The visualisation results indicated that the severe vibration position of the pipeline thermal test is mainly concentrated between the inlet and outlet and between the two bellows.

Practical implications

The results of this study aid in understanding the causes of abnormal vibrations in rocket engine pipelines.

Originality/value

The causes of different vibration frequencies in the complex pipelines of rocket engines and the propagation characteristics of external vibration excitation were obtained.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Abstract

Details

Airport Design and Operation
Type: Book
ISBN: 978-1-78441-869-4

Article
Publication date: 9 January 2024

Bhupendra Kumar Sharma, Umesh Khanduri, Rishu Gandhi and Taseer Muhammad

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow…

Abstract

Purpose

The purpose of this paper is to study haemodynamic flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, magnetohydrodynamic (MHD) flow and aneurysm conditions. The findings of this study offer significant insights into the intricate interplay encompassing electro-osmosis, MHD flow, microorganisms, Joule heating and the ternary hybrid nanofluid.

Design/methodology/approach

The governing equations are first non-dimensionalised, and subsequently, a coordinate transformation is used to regularise the irregular boundaries. The discretisation of the governing equations is accomplished by using the Crank–Nicolson scheme. Furthermore, the tri-diagonal matrix algorithm is applied to solve the resulting matrix arising from the discretisation.

Findings

The investigation reveals that the velocity profile experiences enhancement with an increase in the Debye–Hückel parameter, whereas the magnetic field parameter exhibits the opposite effect, reducing the velocity profile. A comparative study demonstrates the velocity distribution in Au-CuO hybrid nanofluid and Au-CuO-GO ternary hybrid nanofluid. The results indicate a notable enhancement in velocity for the ternary hybrid nanofluid compared to the hybrid nanofluids. Moreover, an increase in the Brinkmann number results in an augmentation in entropy generation.

Originality/value

This study investigates the flow characteristics and entropy analysis in a bifurcated artery system subjected to stenosis, MHD flow and aneurysm conditions. The governing equations are non-dimensionalised, and a coordinate transformation is applied to regularise the irregular boundaries. The Crank–Nicolson scheme is used to model blood flow in the presence of a ternary hybrid nanofluid (Au-CuO-GO/blood) within the arterial domain. The findings shed light on the complex interactions involving stenosis, MHD flow, aneurysms, Joule heating and the ternary hybrid nanofluid. The results indicate a decrease in the wall shear stress (WSS) profile with increasing stenosis size. The MHD effects are observed to influence the velocity distribution, as the velocity profile exhibits a declining nature with an increase in the Hartmann number. In addition, entropy generation increases with an enhancement in the Brinkmann number. This research contributes to understanding fluid dynamics and heat transfer mechanisms in bifurcated arteries, providing valuable insights for diagnosing and treating cardiovascular diseases.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Book part
Publication date: 16 July 2018

Christopher H. Thomas, Foster Roberts, Milorad M. Novicevic, Anthony P. Ammeter and Dragan Loncar

In this chapter we examine various human resource management (HRM) implications involved in the leadership of fluid teams. Leadership of fluid teams, which are distinguished by…

Abstract

In this chapter we examine various human resource management (HRM) implications involved in the leadership of fluid teams. Leadership of fluid teams, which are distinguished by their dynamic composition, requires consideration of issues that may not be as pertinent for stable teams. In particular, we focus on the concept of familiarity. Composing and leading teams with members exhibiting varying degrees of familiarity with one another creates obstacles to effective and efficient functioning and may ultimately lead to poor performance. With this in mind, leaders must pay particular attention to issues of coordination, and composition such that a broad range of generalizable teamwork skills exists within the team. Within this chapter, we explain the concepts of fluid teams, team leadership within fluid teams, and other relevant concepts related to the formation of familiarity. Next, we thoroughly review extant empirical and theoretical research within these areas. We identify areas of correspondence among the various concepts and findings of the reviewed studies and generate an integrated model of fluid team leadership. To conclude, we highlight the distinct HRM implications associated with the use, and leadership, of fluid teams.

Details

Research in Personnel and Human Resources Management
Type: Book
ISBN: 978-1-78756-322-3

Keywords

Article
Publication date: 28 November 2023

Waqar Khan Usafzai, Ioan Pop and Cornelia Revnic

This paper aims to present dual solutions for the two-dimension copper oxide with silver (CuO–Ag) and zinc oxide with silver (ZnO–Ag) hybrid nanofluid flow past a permeable…

Abstract

Purpose

This paper aims to present dual solutions for the two-dimension copper oxide with silver (CuO–Ag) and zinc oxide with silver (ZnO–Ag) hybrid nanofluid flow past a permeable shrinking sheet in a dusty fluid with velocity slip.

Design/methodology/approach

The governing partial differential equations for the two dust particle phases are reduced to the pertinent ordinary differential equations using a similarity transformation. Closed-form analytical solutions for the reduced skin friction and reduced Nusselt number, as well as for the velocity and temperature profiles, were presented, both graphically and in tables, under specific non-dimensional physical parameters such as the suction parameter, Prandtl number, slip parameter and shrinking parameter, which are also presented in both figures and tables.

Findings

The results indicate that for the shrinking flow, the wall skin friction is higher in the dusty fluid when compared with the clear (viscous) fluid. In addition, the effect of the fluid–particle interaction parameter to the fluid phase can be seen more clearly in the shrinking flow. Furthermore, multiple (dual, upper and lower branch solutions) are found for the governing similarity equations and the upper branch solution expanded with higher values of the suction parameter. It can be confirmed that the lower branch solution is unstable.

Practical implications

In practice, the study of the stretching/shrinking flow is crucially important and useful. Both the problems of steady and unsteady flow of a dusty fluid have a wide range of possible applications in practice, such as in the centrifugal separation of particles, sedimentation and underground disposal of radioactive waste materials.

Originality/value

Even though the problem of dusty fluid has been broadly investigated, very limited results can be found for a shrinking sheet. Indeed, this paper has succeeded to obtain analytically dual solutions. The stability analysis can be performed by following many published papers on stretching/shrinking sheets. Finally, the critical values and plotting curves for obtaining single or dual solution are successfully presented.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

21 – 30 of over 28000