Search results

1 – 10 of over 2000
Article
Publication date: 19 June 2017

Bian Tian, Huafeng Li, Ning Yang, Yulong Zhao, Pei Chen and Hanyue Liu

It is significant to know the real-time indexes about the turbulence flow of the ocean system, which has a deep influence on ocean productivity, distribution of the ocean…

293

Abstract

Purpose

It is significant to know the real-time indexes about the turbulence flow of the ocean system, which has a deep influence on ocean productivity, distribution of the ocean populations and transmission of the ocean energy, especially the measurement of turbulence flow velocity. So, it is particularly urgent to provide a high-sensitivity, low-cost and reliable fluid flow sensor for industry and consumer product application. This paper aims to design a micro fluid flow sensor with a cross beam membrane structure. The designed sensor can detect the fluid flow velocity and has a low kinetic energy dissipation rate.

Design/methodology/approach

In this paper, a micro fluid flow sensor with a cross beam membrane structure is designed to measure the ocean turbulence flow velocity. The design, simulation, fabrication and measurement of the designed sensor are discussed. By testing the simply packaged sensor in the fluid flow and analyzing the experiments data, the results show that the designed sensor has favorable performance.

Findings

The paper describes the tests of the designed sensor, and the experimental results show that the designed sensor can measure the fluid flow velocity and has a sensitivity of 11.12 mV/V/(m/s)2 and a low kinetic energy dissipation rate in the range of 10-6-10-4 W/kg.

Originality/value

This paper provides a micro-electro-mechanical systems fluid flow sensor used to measure ocean turbulence flow velocity.

Details

Sensor Review, vol. 37 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 25 July 2022

Xin Tong, Baoer Hao, Zhi Chen, Haiyang Liu and Chuanzhong Xuan

This paper aims to solve the typical thermal airflow sensor's high power consumption and integration difficulties, based on the FS5 thermal element and constant temperature…

Abstract

Purpose

This paper aims to solve the typical thermal airflow sensor's high power consumption and integration difficulties, based on the FS5 thermal element and constant temperature measurement method, a flow sensor is developed with high measurement accuracy, low power consumption, small size, low cost and easy system integration.

Design/methodology/approach

A small wind tunnel was used to test and assess the sensor's measurement range, reaction time, stability, repeatability, measurement accuracy and multi-temperature calibration was performed in the temperature range of −10°C to 30°C. The effect of ambient temperature on the sensor's measurement data is investigated, and the coefficient correction method of power function was investigated to implement the sensor's software temperature compensation function.

Findings

The results show that the sensor is stable and repeatable, the output voltage has a power function relationship with the airflow rate, the flow rate measurement range is 0–18 m/s, the response time is less than 3 s, the measurement accuracy at high flow rates is within 0.4 m/s and the temperature-corrected airflow rate measurement error is less than 5%. Setting the temperature calibration interval to 2°C and 5°C has the same temperature compensation effect, reducing the sensor's calibration effort significantly.

Originality/value

This paper demonstrates that a thermostatic method is used to construct a thermal wind speed sensor that delivers accurate measurements in the wind speed measuring range of 0–18 m/s under test conditions. In addition, the sensor's performance is evaluated, and calibration tests for a wide range of temperatures are done. Finally, based on the power function correction method, a temperature compensation algorithm is proposed.

Details

Sensor Review, vol. 42 no. 5
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 March 2005

A. Umbrashko, E. Baake, B. Nacke and A. Jakovics

Aims to present recent activities in experimental investigations and numerical modelling of the induction cold crucible installation.

Abstract

Purpose

Aims to present recent activities in experimental investigations and numerical modelling of the induction cold crucible installation.

Design/methodology/approach

Temperature and velocity measurements using thermocouples and electromagnetic velocity probes were performed in aluminium melt which was used as a model melt. Measured temperature field and flow pattern were compared with transient 3D calculations based on large eddy simulation (LES) turbulence modelling scheme. Numerical results are in good coincidence with the experimental data.

Findings

The modelling results show that only 3D transient LES is able to model correctly these heat and mass transfer processes.

Originality/value

It is revealed that transient 3D modelling provides a universal tool for simulating convective heat and mass transfer processes in the entire melt influenced by large scale instabilities in the recirculating flows, which contain several main vortexes of the mean flow.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 24 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 5 September 2016

Krzysztof Olasek, Maciej Karczewski, Michal Lipian, Piotr Wiklak and Krzysztof Józwik

A solution to increase the energy production rate of the wind turbine is proposed by forcing more air to move through the turbine working section. This can be achieved by…

Abstract

Purpose

A solution to increase the energy production rate of the wind turbine is proposed by forcing more air to move through the turbine working section. This can be achieved by equipping the rotor with a diffusing channel ended with a brim (diffuser augmented wind turbine – DAWT). The purpose of this paper is to design an experimental stand and perform the measurements of velocity vector fields through the diffuser and power characteristic of the wind turbine.

Design/methodology/approach

The experiments were carried out in a small subsonic wind tunnel at the Institute of Turbomachinery, Lodz University of Technology. An experimental stand design process as well as measurement results are presented. Model size sensitivity study was performed at the beginning. The experimental campaign consisted of velocity measurements by means of particle image velocimetry (PIV) and pneumatic pitot probe as well as torque and rotational velocity measurements.

Findings

Characteristics (power coefficient vs tip speed ratio) of the bare and shrouded wind turbine were obtained. The results show an increase in the wind turbine power up to 70-75 per cent by shrouding the rotor with a diffuser. The mechanisms responsible for such a power increase were well explained by the PIV and pneumatic measurement results revealing the nature of the flow through the diffuser.

Research limitations/implications

Experimental stand for wind turbine rotor testing is of a preliminary character. Most optimal methodology for obtaining power characteristic should be determined now. Presented results can serve as good input for choice of stable and reliable control system of wind turbine operational parameters.

Practical implications

A 3 kW DAWT is being developed at the Institute of Turbomachinery, Lodz University of Technology. Aim of the study is to design a compact and smart wind turbine optimised for low wind speed conditions. Developed wind turbine has a potential to be used as an effective element within a net of distributed generation, e.g. for domestic use.

Originality/value

Research carried out is the continuation of theoretical study began in 1970s. It was also inspired by practical solutions proposed by Japanese researchers few years ago. Presented paper is the summary of work devoted to optimisation of the DAWT for wind conditions in the region. Original solution has been applied, e.g. for experimental stand design (3D printing application).

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 1995

Jonathan Smith

Outlines the four main types of flow metering technology and theirvarious applications, covering electromagnetic flowmeters, coriolis massflowmeters, vortex flowmeters and…

Abstract

Outlines the four main types of flow metering technology and their various applications, covering electromagnetic flowmeters, coriolis mass flowmeters, vortex flowmeters and ultrasonic flowmeters. Looks at the future of flowmeters with regard to quality control standards, signal converters and serial communication. Concludes that since the basic problems surrounding flow measurements have been solved there will be no quantum leap in flowmeter technology, however the four basic flowmeter measuring techniques will be gradually developed and the level of intelligence in each unit will be further enhanced.

Details

Sensor Review, vol. 15 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 14 January 2014

Sari Lakkis, Rafic Younes, Yasser Alayli and Mohamad Sawan

This paper aims to give an overview about the state of the art and novel technologies used in gas sensing. It also discusses the miniaturization potential of some of these…

1601

Abstract

Purpose

This paper aims to give an overview about the state of the art and novel technologies used in gas sensing. It also discusses the miniaturization potential of some of these technologies in a comparative way.

Design/methodology/approach

In this article, the authors state the most of the methods used in gas sensing discuss their advantages and disadvantages and at last the authors discuss the ability of their miniaturization comparing between them in terms of their sensing parameters like sensitivity, selectivity and cost.

Findings

In this article, the authors will try to cover most of the important methods used in gas sensing and their recent developments. The authors will also discuss their miniaturization potential trying to find the best candidate among the different types for the aim of miniaturization.

Originality/value

In this article, the authors will review most of the methods used in gas sensing and discuss their miniaturization potential delimiting the research to a certain type of technology or application.

Details

Sensor Review, vol. 34 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Content available
114

Abstract

Details

Industrial Lubrication and Tribology, vol. 50 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Content available
64

Abstract

Details

Industrial Lubrication and Tribology, vol. 51 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 June 2003

A. Al‐Salaymeh, M. Alhusein and F. Durst

Thermal flow sensors with a wide dynamic range are at present not available in spite of the large demand which exists for such sensors in practical fluid flow measurements. In…

Abstract

Thermal flow sensors with a wide dynamic range are at present not available in spite of the large demand which exists for such sensors in practical fluid flow measurements. In this paper, it is shown that the velocity range of a “time‐of‐flight” thermal flowmeter for slowly changing flows can be increased by using wires (or other heating/sensing elements) with large thermal inertia (time constant) and heating the sending wire with a continuous sinusoidal current, instead of discrete, very short, square‐wave pulses as in the usual pulsed‐wire anemometer. The device described here uses two parallel wires of 12.5μm diameter and its usable speed range is 0.05 to 25m/s. Although the present thermal flowmeter can be applied as a point measurement device, the main applications are in pipe flow, especially at very low flow rates. The high sensitivity at low flow rates makes the device especially suitable for this purpose.

Details

Journal of Quality in Maintenance Engineering, vol. 9 no. 2
Type: Research Article
ISSN: 1355-2511

Keywords

Article
Publication date: 31 July 2009

O.S. Aleksic, S.M. Savic, M.V. Nikolic, L. Sibinoski and Lukovic

The purpose of this paper is to apply negative thermal coefficient (NTC) thick film segmented thermistors (TFSTs) in a micro‐flow sensor for water.

439

Abstract

Purpose

The purpose of this paper is to apply negative thermal coefficient (NTC) thick film segmented thermistors (TFSTs) in a micro‐flow sensor for water.

Design/methodology/approach

A TFST is printed using NTC paste based on nickel manganite. The resistance of this thermistor is measured in a climatic chamber and the resulting curves are calibrated. A micro‐flow sensor is designed using a self‐heated segmented thermistor. The sensing principle is based on heat loss depending on the water flow intensity through the capillary. Water flow calibration is performed. The sensor sensitivity, inertia, and stability are analyzed.

Findings

The micro‐flow sensor exhibits good stability, suitable sensitivity, and inertia for integral measurements of water flow.

Practical implications

Advantages of a micro‐flow sensor using a TFST include low energy consumption, simple measuring procedure, and passive electronics.

Originality/value

This paper describes initial work on a micro‐flow sensor for water using TFSTs.

Details

Microelectronics International, vol. 26 no. 3
Type: Research Article
ISSN: 1356-5362

Keywords

1 – 10 of over 2000