Search results

1 – 10 of over 47000
Article
Publication date: 8 March 2018

Amit Kumar Pandey, Tarun Kumar Gupta and Pawan Kumar Verma

This paper aims to propose a new sleep signal controlled footless domino circuit for reducing the subthreshold and gate oxide leakage currents.

Abstract

Purpose

This paper aims to propose a new sleep signal controlled footless domino circuit for reducing the subthreshold and gate oxide leakage currents.

Design/methodology/approach

In the proposed circuit, a P channel MOSFET (PMOS) sleep switch transistor is inserted between the power supply and the output node. The sleep transistor, the source of the pull-down network, and the source of the N channel MOSFET (NMOS) transistor of the output inverter are controlled by this additional sleep signal to place the footless domino circuit in a low leakage state.

Findings

The authors simulate the proposed circuit by using HSPICE in 45-nm CMOS technology for OR and AND logic gates such as OR2, OR4, OR8, AND2 and AND4 at 25°C and 110°C. The proposed circuit reduces leakage power consumption as compared to the existing circuits.

Originality/value

The proposed circuit significantly reduces the total leakage power consumption up to 99.41 and 99.51 per cent as compared to the standard dual-threshold voltage footless domino circuits at 25°C and 110°C, respectively, and up to 93.79 and 97.98 per cent as compared to the sleep control techniques at 25°C and 110°C, respectively. Similarly, the proposed circuit reduces the active power consumption up to 26.76 and 86.25 per cent as compared to the standard dual-threshold voltage and sleep control techniques footless domino circuits at 25°C and 110°C, respectively.

Article
Publication date: 20 March 2024

Charles Jebarajakirthy, Achchuthan Sivapalan, Manish Das, Haroon Iqbal Maseeh, Md Ashaduzzaman, Carolyn Strong and Deepak Sangroya

This study aims to integrate the theory of planned behavior (TPB) and the value-belief-norm (VBN) theory into a meta-analytic framework to synthesize green consumption literature.

Abstract

Purpose

This study aims to integrate the theory of planned behavior (TPB) and the value-belief-norm (VBN) theory into a meta-analytic framework to synthesize green consumption literature.

Design/methodology/approach

By integrating the findings from 173 studies, a meta-analysis was performed adopting several analytical methods: bivariate analysis, moderation analysis and path analysis.

Findings

VBN- and TPB-based psychological factors (adverse consequences, ascribed responsibility, personal norms, subjective norms, attitude and perceived behavioral control) mediate the effects of altruistic, biospheric and egoistic values on green purchase intention. Further, inconsistencies in the proposed relationships are due to cultural factors (i.e. individualism-collectivism, power distance, uncertainty avoidance, masculinity–femininity, short- vs long-term orientation and indulgence-restraint) and countries’ human development status.

Research limitations/implications

The authors selected papers published in English; hence, other relevant papers in this domain published in other languages might have been missed.

Practical implications

The findings are useful to marketers of green offerings in designing strategies, i.e. specific messages, targeting different customers based on countries’ cultural score and human development index, to harvest positive customer responses.

Originality/value

This study is the pioneering attempt to synthesize the TPB- and VBN-based quantitative literature on green consumer behavior to resolve the reported inconsistent findings.

Details

European Journal of Marketing, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0309-0566

Keywords

Article
Publication date: 23 July 2020

Sandeep Garg and Tarun Kumar Gupta

This paper aims to propose a new fin field-effect transistor (FinFET)-based domino technique low-power series connected foot-driven transistors logic in 32 nm technology and…

Abstract

Purpose

This paper aims to propose a new fin field-effect transistor (FinFET)-based domino technique low-power series connected foot-driven transistors logic in 32 nm technology and examine its performance parameters by performing transient analysis.

Design/methodology/approach

In the proposed technique, the leakage current is reduced at footer node by a division of current to improve the performance of the circuit in terms of average power consumption, propagation delay and noise margin. Simulation of existing and proposed techniques are carried out in FinFET and complementary metal-oxide semiconductor technology at FinFET 32 nm technology for 2-, 4-, 8- and 16-input domino OR gates on a supply voltage of 0.9 V using HSPICE.

Findings

The proposed technique shows maximum power reduction of 77.74% in FinFET short gate (SG) mode in comparison with current-mirror-based process variation tolerant (CPVT) technique and maximum delay reduction of 51.34% in low power (LP) mode in comparison with CPVT technique at a frequency of 100 MHz. The unity noise gain of the proposed circuit is 1.10× to 1.54× higher in comparison with different existing techniques in FinFET SG mode and 1.11× to 1.71× higher in FinFET LP mode. The figure of merit of the proposed circuit is up to 15.77× higher in comparison with existing domino techniques.

Originality/value

The research proposes a new FinFET-based domino technique and shows improvement in power, delay, area and noise performance. The proposed design can be used for implementing high-speed digital circuits such as microprocessors and memories.

Details

Circuit World, vol. 47 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 12 August 2021

Guoda Wang, Ping Li, Yumei Wen and Zhichun Luo

Existing control circuits for piezoelectric energy harvesting (PEH) suffers from long startup time or high power consumption. This paper aims to design an ultra-low power control…

Abstract

Purpose

Existing control circuits for piezoelectric energy harvesting (PEH) suffers from long startup time or high power consumption. This paper aims to design an ultra-low power control circuit that can harvest weak ambient vibrational energy on the order of several microwatts to power heavy loads such as wireless sensors.

Design/methodology/approach

A self-powered control circuit is proposed, functioning for very brief periods at the maximum power point, resulting in a low duty cycle. The circuit can start to function at low input power thresholds and can promptly achieve optimal operating conditions when cold-starting. The circuit is designed to be able to operate without stable DC power supply and powered by the piezoelectric transducers.

Findings

When using the series-synchronized switch harvesting on inductor circuit with a large 1 mF energy storage capacitor, the proposed circuit can perform 322% better than the standard energy harvesting circuit in terms of energy harvested. This control circuit can also achieve an ultra-low consumption of 0.3 µW, as well as capable of cold-starting with input power as low as 5.78 µW.

Originality/value

The intermittent control strategy proposed in this paper can drastically reduce power consumption of the control circuit. Without dedicated cold-start modules and DC auxiliary supply, the circuit can achieve optimal efficiency within one input cycle, if the input signal is larger than voltage threshold. The proposed control strategy is especially favorable for harvesting energy from natural vibrations and can be a promising solution for other PEH circuits as well.

Details

Circuit World, vol. 49 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 3 December 2018

Sudhakar Jyothula

The purpose of this paper is to design a low power clock gating technique using Galeor approach by assimilated with replica path pulse triggered flip flop (RP-PTFF).

Abstract

Purpose

The purpose of this paper is to design a low power clock gating technique using Galeor approach by assimilated with replica path pulse triggered flip flop (RP-PTFF).

Design/methodology/approach

In the present scenario, the inclination of battery for portable devices has been increasing tremendously. Therefore, battery life has become an essential element for portable devices. To increase the battery life of portable devices such as communication devices, these have to be made with low power requirements. Hence, power consumption is one of the main issues in CMOS design. To reap a low-power battery with optimum delay constraints, a new methodology is proposed by using the advantages of a low leakage GALEOR approach. By integrating the proposed GALEOR technique with conventional PTFFs, a reduction in power consumption is achieved.

Findings

The design was implemented in mentor graphics EDA tools with 130 nm technology, and the proposed technique is compared with existing conventional PTFFs in terms of power consumption. The average power consumed by the proposed technique (RP-PTFF clock gating with the GALEOR technique) is reduced to 47 per cent compared to conventional PTFF for 100 per cent switching activity.

Originality/value

The study demonstrates that RP-PTFF with clock gating using the GALEOR approach is a design that is superior to the conventional PTFFs.

Details

World Journal of Engineering, vol. 15 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 June 2020

Kanika Monga, Nitin Chaturvedi and S. Gurunarayanan

Emerging event-driven applications such as the internet-of-things requires an ultra-low power operation to prolong battery life. Shutting down non-functional block during standby…

Abstract

Purpose

Emerging event-driven applications such as the internet-of-things requires an ultra-low power operation to prolong battery life. Shutting down non-functional block during standby mode is an efficient way to save power. However, it results in a loss of system state, and a considerable amount of energy is required to restore the system state. Conventional state retentive flip-flops have an “Always ON” circuitry, which results in large leakage power consumption, especially during long standby periods. Therefore, this paper aims to explore the emerging non-volatile memory element spin transfer torque-magnetic tunnel junction (STT-MTJ) as one the prospective candidate to obtain a low-power solution to state retention.

Design/methodology/approach

The conventional D flip-flop is modified by using STT-MTJ to incorporate non-volatility in slave latch. Two novel designs are proposed in this paper, which can store the data of a flip-flip into the MTJs before power off and restores after power on to resume the operation from pre-standby state.

Findings

A comparison of the proposed design with the conventional state retentive flip-flop shows 100 per cent reduction in leakage power during standby mode with 66-69 per cent active power and 55-64 per cent delay overhead. Also, a comparison with existing MTJ-based non-volatile flip-flop shows a reduction in energy consumption and area overhead. Furthermore, use of a fully depleted-silicon on insulator and fin field-effect transistor substituting a complementary metal oxide semiconductor results in 70-80 per cent reduction in the total power consumption.

Originality/value

Two novel state-retentive D flip-flops using STT-MTJ are proposed in this paper, which aims to obtain zero leakage power during standby mode.

Details

Circuit World, vol. 46 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 15 February 2022

Neeraj Bisht, Bishwajeet Pandey and Sandeep Kumar Budhani

Privacy and security of personal data is the prime concern in any communication. Security algorithms play a crucial role in privacy preserving and are used extensively. Therefore…

Abstract

Purpose

Privacy and security of personal data is the prime concern in any communication. Security algorithms play a crucial role in privacy preserving and are used extensively. Therefore, these algorithms need to be effective as well as energy-efficient. Advanced Encryption Standards (AES) is one of the efficient security algorithms. The principal purpose of this research is to design Energy efficient implementation of AES, as it is one of the important aspects for a step toward green computing.

Design/methodology/approach

This paper presents a low voltage complementary metal oxide semiconductor (LVCMOS) based energy efficient architecture for AES encryption algorithm on Field Programmable Gate Array (FPGA) platform. The experiments are performed for five different FPGAs at different input/output standards of LVCMOS. Experiments are performed separately at two frequencies (default and 1.6 GHz).

Findings

The comparative study of total on-chip power consumption for different frequency suggested that LVCMOS12 performed best for all the FPGAs. Also, Kintex-7 Low Voltage was found to be the best performing FPGA. At 1.6 GHz frequency, the authors observed 55% less on-chip power consumption when switched from Artix-7 with LVCMOS33 (maximum power consuming combination) to Kintex-7 Low Voltage with LVCMOS12. Mathematical models are developed for the proposed design.

Originality/value

The green implementation of AES algorithm based on LVCMOS standards has not been explored yet by researchers. The energy efficient implementation of AES will certainly be beneficial for society as it will consume less power and dissipate lesser heat to environment.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 27 June 2008

Yohan Chae and Younggoo Kwon

IEEE 802.15.4 is a new standard uniquely designed for low‐rate wireless sensor networks (WSNs). It targets low data rate, low power consumption and low‐cost wireless networking…

Abstract

Purpose

IEEE 802.15.4 is a new standard uniquely designed for low‐rate wireless sensor networks (WSNs). It targets low data rate, low power consumption and low‐cost wireless networking, and offers device level wireless connectivity. The purpose of this paper is to propose a traffic adaptive power control algorithm for beacon relayed distributed WSNs.

Design/methodology/approach

A general coordinated sleeping algorithm and the traffic adaptive algorithm are combined in an IEEE 802.15.4 MAC protocol to achieve high‐energy efficiency and high performance at the same time.

Findings

By observing the sporadic traffic and beacon relaying characteristics of WSNs, the paper proposes a traffic‐adaptive IEEE 802.15.4 MAC with a coordinated sleeping algorithm. Based on various performance studies, it was found that the proposed algorithm can significantly improve power consumptions in wireless sensor networks.

Originality/value

The paper is of value in proposing a traffic adaptive power control algorithm showing highly efficient power consumptions in low‐traffic conditions as well as with an acceptable degree of adaptation to high‐traffic conditions. In delay performance, it shows longer delay performance compared with other schemes because of the beacon relay procedure while the proposed algorithm reduces the power consumptions dramatically.

Details

International Journal of Pervasive Computing and Communications, vol. 4 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 3 February 2020

Afreen Khursheed and Kavita Khare

This paper is an unprecedented effort to resolve the performance issue of very large scale integrated circuits (VLSI) interconnects encountered because of the scaling of device…

Abstract

Purpose

This paper is an unprecedented effort to resolve the performance issue of very large scale integrated circuits (VLSI) interconnects encountered because of the scaling of device dimensions. Repeater interpolation technique is an effective approach for enhancing speed of interconnect network. Proposed buffers as repeater are modeled by using dual chirality multi-Vt technology to reduce delay besides mitigating average power consumption. Interconnects modeled with carbon nanotube (CNT) technology are compared with copper interconnect for various lengths. Buffer circuits are designed with both CNT and metal oxide semiconductor technology for comparison by using various combination of (CMOSFET repeater-Cu interconnect) and (CNTFET repeater-CNT interconnect). Compared to conventional buffer, ProposedBuffer1 saves dynamic power by 84.86%, leakage power by 88% and offers reduction in delay by 72%. ProposedBuffer2 brings about dynamic power saving of 99.94%, leakage power saving of 93%, but causes delay penalty. Simulation using Stanford SPICE model for CNT and silicon-field effective transistor berkeley short-channel IGFET Model4 (BSIM4) predictive technology model (PTM) for MOS is done in H simulation program with integrated circuit emphasis for 32 nm.

Design/methodology/approach

Usually, the dynamic power consumption dominates the total power, while the leakage power has a negligible effect. But with the scaling of device technology, leakage power has become one of the important factors of consideration in low power design techniques. Various strategies are explored to suppress the leakage power in standby mode. The adoption of a multi-threshold design strategy is an effective approach to improve the performance of buffer circuits without compromising on the delay and area overhead. Unlike MOS technology, to implement multi-Vt transistors in case of CNT technology is quite easy. It can be achieved by varying diameter of carbon nanotubes using chirality control.

Findings

An unprecedented approach is taken for optimizing the delay and power dissipation and hence drastically reducing energy consumption by keeping proper harmony between wire technology and repeater-buffer technology. This paper proposes two novel ultra-low power buffers (PB1 and PB2) as repeaters for high-speed interconnect applications in portable devices. PB1 buffer implemented with high-speed CML technique nested with multi-threshold (Vt) technology sleep transistor so as to improve the speed along with a reduction in standby power consumption. PB2 is judicially implemented by inserting separable sized, dual chirality P type carbon nanotube field effective transistors. The HSpice simulation results justify the correctness of schemes.

Originality/value

Result analysis points out that compared to conventional Cu interconnect, the CNT interconnects paired with Proposed CNTFET buffer designs are more energy efficient. PB1 saves dynamic power by 84.86%, reduces propagation delay by 72% and leakage power consumption by 88%. PB2 brings about dynamic power saving of 99.4%, leakage power saving of 93%, with improvement in speed by 52%. This is mainly because of the fact that CNT interconnect offers low resistance and CNTFET drivers have high mobility and ballistic mode of operation.

Details

Circuit World, vol. 46 no. 2
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 7 February 2022

Yavar Safaei Mehrabani, Mojtaba Maleknejad, Danial Rostami and HamidReza Uoosefian

Full adder cells are building blocks of arithmetic circuits and affect the performance of the entire digital system. The purpose of this study is to provide a low-power and…

44

Abstract

Purpose

Full adder cells are building blocks of arithmetic circuits and affect the performance of the entire digital system. The purpose of this study is to provide a low-power and high-performance full adder cell.

Design/methodology/approach

Approximate computing is a novel paradigm that is used to design low-power and high-performance circuits. In this paper, a novel 1-bit approximate full adder cell is presented using the combination of complementary metal-oxide-semiconductor, transmission gate and pass transistor logic styles.

Findings

Simulation results confirm the superiority of the proposed design in terms of power consumption and power–delay product (PDP) criteria compared to state-of-the-art circuits. Also, the proposed full adder cell is applied in an 8-bit ripple carry adder to accomplish image processing applications including image blending, motion detection and edge detection. The results confirm that the proposed cell has premier compromise and outperforms its counterparts.

Originality/value

The proposed cell consists of only 11 transistors and decreases the switching activity remarkably. Therefore, it is a low-power and low-PDP cell.

Details

Circuit World, vol. 49 no. 4
Type: Research Article
ISSN: 0305-6120

Keywords

1 – 10 of over 47000