Search results

1 – 10 of 675
Article
Publication date: 20 December 2023

Kailash Choudhary, Narpat Ram Sangwa and Kuldip Singh Sangwan

This study aims to quantify and compare the environmental impacts of Marble-stone and Kota-stone flooring options widely used for buildings in India. The study discusses the…

Abstract

Purpose

This study aims to quantify and compare the environmental impacts of Marble-stone and Kota-stone flooring options widely used for buildings in India. The study discusses the possibility of carbon sequestration through Bamboo cultivation in India.

Design/methodology/approach

The study has followed a standard life cycle assessment (LCA) framework based on ISO 14040 guidelines. Three distinct phases have been compared on midpoint and endpoint assessment categories – raw material, polishing and disposal. Primary data has been collected from the construction site in India, and secondary data has been collected from the Ecoinvent 3.0 database. Previous studies have been referred to discuss and calculate the area of bamboo cultivation required to sequestrate the generated carbon from the flooring.

Findings

The study has found that endpoint category damage to resources, and midpoint categories of climate change, metal depletion and agricultural land use are highly impacted in building floorings. The study has also found that the Marble-stone floor generates higher environmental impacts than the Kota-stone floor in most of the midpoint and endpoint impact categories. This difference is significant in the raw material phase due to the different compositions of stones. The study also found that Bamboo has excellent potential to act as a carbon sink and mitigate the generated carbon.

Research limitations/implications

This study excludes human labour, cutting and distribution of floor tiles made of Marble-stone and Kota-stone. The researcher can use the study to evaluate, compare and benchmark the various building flooring options from the environmental perspective. The study aids to the body of knowledge available on the various building flooring options by presenting the LCA or the environmental impacts generated by two flooring options. It is expected that the architects and builders can use these results to develop carbon-neutral buildings. This study provides a methodology for governments, constructors, builders and individuals to evaluate, compare and benchmark the various construction materials from the environmental perspective by computing the environmental impacts throughout the life cycle of the materials.

Originality/value

This study compares two widely used building flooring options using the LCA methodology and evaluates the potential of bamboo cultivation near the buildings for carbon sinks. The study is unique because it shows the environmental impacts of two flooring options and the carbon sequestration method to mitigate/absorb the generated environmental impacts in or around the building itself through bamboo cultivation. This study may set the foundation for carbon-neutral buildings.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 21 July 2022

Henrik Saabye and Daryl John Powell

This paper aims to investigate how manufacturers can foster insights and improvements from real-time data among shop-floor workers by developing organisational “learning-to-learn”…

Abstract

Purpose

This paper aims to investigate how manufacturers can foster insights and improvements from real-time data among shop-floor workers by developing organisational “learning-to-learn” capabilities based on both the lean- and action learning principle of learning through problem-solving. Second, the purpose is to extrapolate findings on how action learning can enable the complementarity between lean and industry 4.0.

Design/methodology/approach

An insider action research approach is adopted to investigate how manufacturers can enable their shop-floor workers to foster insights and improvements from real-time data at VELUX.

Findings

The findings report that enabling shop-floor workers to use real-time data consist of developing three consecutive organisational building blocks of learning-to-learn, learning-to-learn using real-time data and learning-to-learn generating real-time data − and helping others to learn (to learn).

Originality/value

First, the study contributes to theory and practice by demonstrating that a learning-to-learn capability is a core construct for manufacturers seeking to enable shop-floor workers to use real-time data-capturing systems to drive improvement. Second, the study outlines how lean and industry 4.0 complementarity can be enabled by action learning. Moreover, the study allows us to deduce six necessary conditions for enabling shop-floor workers to foster insights and improvements from real-time data.

Details

International Journal of Lean Six Sigma, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-4166

Keywords

Article
Publication date: 10 July 2023

Md. Mehrab Hossain, Shakil Ahmed, S.M. Asif Anam, Irmatova Aziza Baxramovna, Tamanna Islam Meem, Md. Habibur Rahman Sobuz and Iffat Haq

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be…

Abstract

Purpose

Construction safety is a crucial aspect that has far-reaching impacts on economic development. But safety monitoring is often reliant on labor-based observations, which can be prone to errors and result in numerous fatalities annually. This study aims to address this issue by proposing a cloud-building information modeling (BIM)-based framework to provide real-time safety monitoring on construction sites to enhance safety practices and reduce fatalities.

Design/methodology/approach

This system integrates an automated safety tracking mobile app to detect hazardous locations on construction sites, a cloud-based BIM system for visualization of worker tracking on a virtual construction site and a Web interface to visualize and monitor site safety.

Findings

The study’s results indicate that implementing a comprehensive automated safety monitoring approach is feasible and suitable for general indoor construction site environments. Furthermore, the assessment of an advanced safety monitoring system has been successfully implemented, indicating its potential effectiveness in enhancing safety practices in construction sites.

Practical implications

By using this system, the construction industry can prevent accidents and fatalities, promote the adoption of new technologies and methods with minimal effort and cost and improve safety outcomes and productivity. This system can reduce workers’ compensation claims, insurance costs and legal penalties, benefiting all stakeholders involved.

Originality/value

To the best of the authors’ knowledge, this study represents the first attempt in Bangladesh to develop a mobile app-based technological solution aimed at reforming construction safety culture by using BIM technology. This has the potential to change the construction sector’s attitude toward accepting new technologies and cultures through its convenient choice of equipment.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 16 May 2022

Gökçe Tomrukçu and Touraj Ashrafian

The residential buildings sector has a high priority in the climate change adaptation process due to significant CO2 emissions, high energy consumption and negative environmental…

356

Abstract

Purpose

The residential buildings sector has a high priority in the climate change adaptation process due to significant CO2 emissions, high energy consumption and negative environmental impacts. The article investigates how, conversely speaking, the residential buildings will be affected by climate change, and how to improve existing structures and support long-term decisions.

Design/methodology/approach

The climate dataset was created using the scenarios determined by the Intergovernmental Panel on Climate Change (IPCC), and this was used in the study. Different building envelope and Heating, Ventilating and Air Conditioning (HVAC) systems scenarios have been developed and simulated. Then, the best scenario was determined with comparative results, and recommendations were developed.

Findings

The findings reveal that future temperature-increase will significantly impact buildings' cooling and heating energy use. As the outdoor air temperatures increase due to climate change, the heating loads of the buildings decrease, and the cooling loads increase significantly. While the heating energy consumption of the house was calculated at 170.85 kWh/m2 in 2020, this value shall decrease significantly to 115.01 kWh/m2 in 2080. On the other hand, the cooling energy doubled between 2020 and 2080 and reached 106.95 kWh/m2 from 53.14 kWh/m2 measured in 2020.

Originality/value

Single-family houses constitute a significant proportion of the building stock. An in-depth analysis of such a building type is necessary to cope with the devastating consequences of climate change. The study developed and scrutinised energy performance improvement scenarios to define the climate change adaptation process' impact and proper procedure. The study is trying to create a strategy to increase the climate resistance capabilities of buildings and fill the gaps in this regard.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 30 April 2024

Jacqueline Humphries, Pepijn Van de Ven, Nehal Amer, Nitin Nandeshwar and Alan Ryan

Maintaining the safety of the human is a major concern in factories where humans co-exist with robots and other physical tools. Typically, the area around the robots is monitored…

Abstract

Purpose

Maintaining the safety of the human is a major concern in factories where humans co-exist with robots and other physical tools. Typically, the area around the robots is monitored using lasers. However, lasers cannot distinguish between human and non-human objects in the robot’s path. Stopping or slowing down the robot when non-human objects approach is unproductive. This research contribution addresses that inefficiency by showing how computer-vision techniques can be used instead of lasers which improve up-time of the robot.

Design/methodology/approach

A computer-vision safety system is presented. Image segmentation, 3D point clouds, face recognition, hand gesture recognition, speed and trajectory tracking and a digital twin are used. Using speed and separation, the robot’s speed is controlled based on the nearest location of humans accurate to their body shape. The computer-vision safety system is compared to a traditional laser measure. The system is evaluated in a controlled test, and in the field.

Findings

Computer-vision and lasers are shown to be equivalent by a measure of relationship and measure of agreement. R2 is given as 0.999983. The two methods are systematically producing similar results, as the bias is close to zero, at 0.060 mm. Using Bland–Altman analysis, 95% of the differences lie within the limits of maximum acceptable differences.

Originality/value

In this paper an original model for future computer-vision safety systems is described which is equivalent to existing laser systems, identifies and adapts to particular humans and reduces the need to slow and stop systems thereby improving efficiency. The implication is that computer-vision can be used to substitute lasers and permit adaptive robotic control in human–robot collaboration systems.

Details

Technological Sustainability, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-1312

Keywords

Article
Publication date: 26 June 2023

Argaw Gurmu, M. Reza Hosseini, Mehrdad Arashpour and Wellia Lioeng

Building defects are becoming recurrent phenomena in most high-rise buildings. However, little research exists on the analysis of defects in high-rise buildings based on data from…

Abstract

Purpose

Building defects are becoming recurrent phenomena in most high-rise buildings. However, little research exists on the analysis of defects in high-rise buildings based on data from real-life projects. This study aims to develop dashboards and models for revealing the most common locations of defects, understanding associations among defects and predicting the rectification periods.

Design/methodology/approach

In total, 15,484 defect reports comprising qualitative and quantitative data were obtained from a company that provides consulting services for the construction industry in Victoria, Australia. Data mining methods were applied using a wide range of Python libraries including NumPy, Pandas, Natural Language Toolkit, SpaCy and Regular Expression, alongside association rule mining (ARM) and simulations.

Findings

Findings reveal that defects in multi-storey buildings often occur on lower levels, rather than on higher levels. Joinery defects were found to be the most recurrent problem on ground floors. The ARM outcomes show that the occurrence of one type of defect can be taken as an indication for the existence of other types of defects. For instance, in laundry, the chance of occurrence of plumbing and joinery defects, where paint defects are observed, is 88%. The stochastic model built for door defects showed that there is a 60% chance that defects on doors can be rectified within 60 days.

Originality/value

The dashboards provide original insight and novel ideas regarding the frequency of defects in various positions in multi-storey buildings. The stochastic models can provide a reliable point of reference for property managers, occupants and sub-contractors for taking measures to avoid reoccurring defects; so too, findings provide estimations of possible rectification periods for various types of defects.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 22 June 2023

Argaw Gurmu and Mani Pourdadash Miri

Several factors influence the costs of buildings. Thus, identifying the cost significant factors can assist to improve the accuracy of project cost forecasts during the planning…

Abstract

Purpose

Several factors influence the costs of buildings. Thus, identifying the cost significant factors can assist to improve the accuracy of project cost forecasts during the planning phase. This paper aims to identify the cost significant parameters and explore the potential for improving the accuracy of cost forecasts for buildings using machine learning techniques and large data sets.

Design/methodology/approach

The Australian State of Victoria Building Authority data sets, which comprise various parameters such as cost of the buildings, materials used, gross floor areas (GFA) and type of buildings, have been used. Five different machine learning regression models, such as decision tree, linear regression, random forest, gradient boosting and k-nearest neighbor were used.

Findings

The findings of the study showed that among the chosen models, linear regression provided the worst outcome (r2 = 0.38) while decision tree (r2 = 0.66) and gradient boosting (r2 = 0.62) provided the best outcome. Among the analyzed features, the class of buildings explained about 34% of the variations, followed by GFA and walls, which both accounted for 26% of the variations.

Originality/value

The output of this research can provide important information regarding the factors that have major impacts on the costs of buildings in the Australian construction industry. The study revealed that the cost of buildings is highly influenced by their classes.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 30 March 2023

Flora Bougiatioti, Eleni Alexandrou and Miltiadis Katsaros

Residential buildings in Greece constitute an important portion of the existing building stock. Furthermore, most of these buildings were built prior to the first Thermal…

Abstract

Purpose

Residential buildings in Greece constitute an important portion of the existing building stock. Furthermore, most of these buildings were built prior to the first Thermal Insulation Code of 1981. The article focuses on existing, typical residences built after 1920, which are found mostly in suburban areas and settlements all around Greece. The purpose of the research is to evaluate the effect of simple bioclimatic interventions focused on the improvement of their diurnal, inter-seasonal and annual thermal performance.

Design/methodology/approach

The applied strategies include application of thermal insulation in the building shell and openings, passive solar systems for the heating period and shading and natural ventilation for the summer period. The effect of the strategies is analysed with the use of building energy analysis. The simulation method was selected because it provides the possibility of parametric analysis and comparisons for different proposals in different orientations.

Findings

The results show that the increased thermal mass of the construction is the most decisive parameter of the thermal behaviour throughout the year.

Research limitations/implications

The typical residences under investigation are often found in urban and/or suburban surroundings. These mostly refer to free-standing buildings situated, which, in many cases, do not have the disadvantages and limitations that the geometrical characteristics of densely built urban locations impose on incident solar radiation (e.g. overshadowing during the winter) and air circulation (e.g. reduce natural ventilation during the summer). Nevertheless, even in these cases, the surrounding built environment may also have relevant negative effects, which were not taken under consideration and could be included in further, future research that will include the effect of various orientations, as well as of neighbouring buildings.

Practical implications

Existing residences built prior to the first Thermal Insulation Code (1981) form an important part of the building stock. Consequently their energy upgrade could contribute to significant conventional energy savings for heating and cooling, along with the inter-seasonal improvement of interior thermal comfort conditions.

Social implications

The proposed interventions can improve thermal comfort conditions and lead to a reduction of energy consumption for heating and cooling, which is an important step against energy poverty and the on-going energy crisis.

Originality/value

The proposed interventions only involve the building envelope and are simple with relatively low cost.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 5 April 2024

Alexander Conrad Culley

The purpose of this paper is to scrutinise the effectiveness of four derivative exchanges’ enforcement efforts since 2007. These exchanges include the Commodity Exchange Inc. and…

Abstract

Purpose

The purpose of this paper is to scrutinise the effectiveness of four derivative exchanges’ enforcement efforts since 2007. These exchanges include the Commodity Exchange Inc. and ICE Futures US from the United States and ICE Futures Europe and the London Metal Exchange from the UK.

Design/methodology/approach

The paper examines 799 enforcement notices published by four exchanges through a behavioural science lens: HUMANS conceived by Hunt (2023) in Humanizing Rules: Bringing Behavioural Science to Ethics and Compliance.

Findings

The paper finds the effectiveness of the exchanges’ enforcement efforts to be a mixed picture as financial markets transition from the digital to artificial intelligence era. Humans remain a key cog in the wheel of market participants’ trading operations, albeit their roles have changed. Despite this, some elements of exchanges’ enforcement regimes have not kept pace with the move from floor to remote trading. However, in other respects, their efforts are or should be, effective, at least in behavioural terms.

Research limitations/implications

The paper’s findings are arguably limited to exchanges based in Anglophone jurisdictions. The information published by the exchanges is variable, making “like-for-like” comparisons difficult in some areas.

Practical implications

The paper makes several recommendations that, if adopted, could help exchanges to increase the potency of their enforcement programmes.

Originality/value

A key aim of the paper is to shift the lens through which the debate concerning the efficacy of exchange-level oversight is conducted. Hitherto, a legal lens has been used, whereas this paper uses a behavioural lens.

Details

Journal of Financial Regulation and Compliance, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1358-1988

Keywords

Article
Publication date: 18 March 2024

Nuno Miguel de Matos Torre and Andrei Bonamigo

Maintenance represents an indispensable role in the productive sector of the steel industry. The increasing use of operating with a high level of precision makes hydraulic systems…

Abstract

Purpose

Maintenance represents an indispensable role in the productive sector of the steel industry. The increasing use of operating with a high level of precision makes hydraulic systems one of the issues that require a high level of attention. This study aims to explore an empirical investigation for decreasing the occurrences of corrective maintenance of hydraulic systems in the context of Lean 4.0.

Design/methodology/approach

The maintenance model is developed based on action-research methodology through an empirical investigation, with nine stages. This approach aims to build a scenario to analyze and interpret the occurrences, seeking to implement and evaluate the actions to be performed. The undertaken initiatives demonstrate that this approach can be applied to optimize the maintenance of an organization.

Findings

The main contribution of this paper is to demonstrate that the applied method allows the overviewing results, with a qualitative approach concerning the maintenance actions and management processes to be considered, allowing a holistic understanding and contributing to the current literature. The results also indicated that Lean 4.0 has direct and mediating effects on maintenance performance.

Originality/value

This research intends to propose an evaluation framework with an interdimensional linkage between action research methodology and Lean 4.0, to explore an empirical investigation and contributing to understanding the actions to reduce the occurrences of hydraulic systems corrective maintenance in a production line in the steel industry.

Details

Journal of Quality in Maintenance Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2511

Keywords

1 – 10 of 675