Search results

1 – 10 of over 2000
Article
Publication date: 6 February 2023

Changle Li, Chong Yao, Shuo Xu, Leifeng Zhang, Yilun Fan and Jie Zhao

With the rapid development of the 3C industry, the problem of automated operation of 3C wire is becoming increasingly prominent. However, the 3C wire has high flexibility, and its…

Abstract

Purpose

With the rapid development of the 3C industry, the problem of automated operation of 3C wire is becoming increasingly prominent. However, the 3C wire has high flexibility, and its deformation is difficult to model and control. How to realize the automation operation of flexible wire in 3C products is still an important issue that restricts the development of the 3C industry. Therefore, this paper designs a system that aims to improve the automation level of the 3C industry.

Design/methodology/approach

This paper designed a visual servo control system. Based on the perception of the flexible wire, a Jacobi matrix is used to relate the deformation of the wire to the action of the robot end; by building and optimizing the Jacobi matrix, the robot can control the flexible wire.

Findings

By using the visual servo control system, the shape and deformation of the flexible wire are perceived, and based on this, the robot can control the deformation of the flexible wire well. The experimental environment was built to evaluate the accuracy and stability of the system for controlling the deformation of the flexible wire.

Originality/value

An image-based visual servo system is proposed to operate the flexible wire, including the vision system, visual controller and joint velocity controller. It is a scheme suitable for flexible wire operation, which has helped to automate flexible wire-related industries. Its core is to correlate the motion of the robot end with the deformation of the flexible wire through the Jacobian matrix.

Details

Robotic Intelligence and Automation, vol. 43 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 16 October 2017

Chunxia Zhu, Jay Katupitiya and Jing Wang

Manipulator motion accuracy is a fundamental requirement for precision manufacturing equipment. Light weight manipulators in high speed motions are vulnerable to deformations. The…

Abstract

Purpose

Manipulator motion accuracy is a fundamental requirement for precision manufacturing equipment. Light weight manipulators in high speed motions are vulnerable to deformations. The purpose of this work is to analyze the effect of link deformation on the motion precision of parallel manipulators.

Design/methodology/approach

The flexible dynamics model of the links is first established by applying the Euler–Bernoulli beam theory and the assumed modal method. The rigid-flexible coupling equations of the parallel mechanism are further derived by using the Lagrange multiplier approach. The elastic energy resulting from spiral motion and link deformations are computed and analyzed. Motion errors of the 3-link torque-prismatic-torque parallel manipulator are then evaluated based on its inverse kinematics. The validation experiments are also conducted to verify the numerical results.

Findings

The lateral deformation and axial deformation are largest at the middle of the driven links. The axial deformation at the middle of the driven link is approximately one-tenth of the transversal deformation. However, the elastic potential energy of the transversal deformation is much smaller than the elastic force generated from axial deformation.

Practical implications

Knowledge on the relationship between link deformation and motion precision is useful in the design of parallel manipulators for high performing dynamic responses.

Originality/value

This work establishes the relationship between motion precision and the amount of link deformation in parallel manipulators.

Details

Industrial Robot: An International Journal, vol. 44 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 17 October 2018

Xiaokai Mu, Qingchao Sun, Wei Sun, Yunlong Wang, Chuanhua Wang and Xiaobang Wang

The traditional precision design only takes the influence of geometric tolerance of the parts and does not involve the load deformation in the assembly process. This paper aims to…

Abstract

Purpose

The traditional precision design only takes the influence of geometric tolerance of the parts and does not involve the load deformation in the assembly process. This paper aims to analyze the influence mechanism of flexible parts deformation on the geometric precision, and then to ensure the reliability and stability of the mechanical system.

Design/methodology/approach

Firstly, this paper adopts the N-GPS to analyze the influence mechanism of flexible parts deformation on the geometric precision and constructs a coupling 3D tolerance mathematical model of the geometric tolerance and the load deformation deviation based on the SDT theory, homogeneous coordinate transformation theory and surface authentication idea. Secondly, the least square method is used to fit the deformation surface of the mating surface under load so as to complete the conversion from the non-ideal element to the ideal element.

Findings

This paper takes the horizontal machining center as a case to obtain the deformation information of the mating surface under the self-weight load. The results show that the deformation deviation of the parts has the trend of transmission and accumulation under the load. The terminal deformation cumulative amount of the system is up to –0.0249 mm, which indicated that the influence of parts deformation on the mechanical system precision cannot be ignored.

Originality/value

This paper establishes a comprehensive 3D tolerance mathematical model, which comprehensively considers the effect of the dimensional tolerance, geometric tolerance and load deformation deviation. By this way, the assembly precision of mechanical system can be accurately predicted.

Details

Engineering Computations, vol. 35 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 February 2022

Chang Zhao, Li Zhou and Tao Qiu

Adaptive bump inlet can adaptively change the shape of inlet bump surface according to the flight speed of aircraft, ensuring that the inlet has good inlet-engine match…

Abstract

Purpose

Adaptive bump inlet can adaptively change the shape of inlet bump surface according to the flight speed of aircraft, ensuring that the inlet has good inlet-engine match performance in a wide speed range. This paper aims to use a composite flexible skin reinforced by shape memory alloy (SMA) fiber as the deformable structure at bump surface to realize the adjustable bump surface of adaptive bump inlet.

Design/methodology/approach

According to the deformation and load-bearing requirements of adaptive bump, SMA is applied to the design of adaptive bump inlet due to its characteristic of super-elasticity. A kind of SMA fiber is studied. A composite flexible skin reinforced by SMA is proposed, and its mechanical properties are analyzed. On this basis, an adaptive bump inlet is designed in which the composite flexible skin reinforced by SMA is used as bump surface, and the shape of the bump surface is adjusted by way of pressuring. The design scheme and specific parameters of the adaptive bump are given.

Findings

An adaptive bump surface that meets the design requirements of the inlet is designed, which can effectively adjust the inlet throat area with a throat area change rate of 20%.

Originality/value

An adaptive bump inlet with composite flexible skin as a deformable structure at bump surface is designed, and SMA is applied as the reinforcing fiber.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 July 2021

Mustafa Serdar Genç, Hacımurat Demir, Mustafa Özden and Tuna Murat Bodur

The purpose of this exhaustive experimental study is to investigate the fluid-structure interaction in the flexible membrane wings over a range of angles of attack for various…

Abstract

Purpose

The purpose of this exhaustive experimental study is to investigate the fluid-structure interaction in the flexible membrane wings over a range of angles of attack for various Reynolds numbers.

Design/methodology/approach

In this paper, an experimental study on fluid-structure interaction of flexible membrane wings was presented at Reynolds numbers of 2.5 × 104, 5 × 104 and 7.5 × 104. In the experimental studies, flow visualization, velocity and deformation measurements for flexible membrane wings were performed by the smoke-wire technique, multichannel constant temperature anemometer and digital image correlation system, respectively. All experimental results were combined and fluid-structure interaction was discussed.

Findings

In the flexible wings with the higher aspect ratio, higher vibration modes were noticed because the leading-edge separation was dominant at lower angles of attack. As both Reynolds number and the aspect ratio increased, the maximum membrane deformations increased and the vibrations became visible, secondary vibration modes were observed with growing the leading-edge vortices at moderate angles of attack. Moreover, in the graphs of the spectral analysis of the membrane displacement and the velocity; the dominant frequencies coincided because of the interaction of the flow over the wings and the membrane deformations.

Originality/value

Unlike available literature, obtained results were presented comparatively using the sketches of the smoke-wire photographs with deformation measurement or turbulence statistics from the velocity measurements. In this study, fluid-structure interaction and leading-edge vortices of membrane wings were investigated in detail with increasing both Reynolds number and the aspect ratio.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 12 August 2014

Shusheng Bi, Hongwei Ma, Yueri Cai, Chuanmeng Niu and Yuliang Wang

– The paper aims to present a dynamic model of flexible oscillating pectoral fin for further study on its propulsion mechanism.

Abstract

Purpose

The paper aims to present a dynamic model of flexible oscillating pectoral fin for further study on its propulsion mechanism.

Design/methodology/approach

The chordwise and spanwise motions of cow-nosed ray’s pectoral fin are first analyzed based on the mechanism of active/passive flexible deformation. The kinematic model of oscillating pectoral fin is established by introducing the flexible deformation. Then, the dynamic model of the oscillating pectoral fin is developed based on the quasi-steady blade element theory. A series of hydrodynamic experiments on the oscillating pectoral fin are carried out to investigate the influences of motion parameters on the propulsion performance of the oscillating pectoral fin.

Findings

The experimental results are consistent with that obtained through analytical calculation within a certain range, which indicates that the developed dynamic model in this paper is applicable to describe the dynamic characteristics of the oscillating pectoral fin approximately. The experimental results show that the average thrust of an oscillating pectoral fin increases with the increasing oscillating amplitude and frequency. However, the relationship between the average thrust and the oscillating frequency is nonlinear. Moreover, the experimental results show that there is an optimal phase difference at which the oscillating pectoral fin achieves the maximum average thrust.

Originality/value

The developed dynamic model provides the theoretical basis for further research on propulsion mechanism of oscillating pectoral fins. It can also be used in the design of the bionic pectoral fins.

Details

Industrial Robot: An International Journal, vol. 41 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 7 May 2019

Tao Zhang, Yuntao Song, Huapeng Wu, Heikki Handroos, Yong Cheng and Xuanchen Zhang

Remote handling (RH) manipulators have been widely studied for maintenance tasks in fusion reactors. Those tasks always require heavy load, high accuracy and large work space for…

159

Abstract

Purpose

Remote handling (RH) manipulators have been widely studied for maintenance tasks in fusion reactors. Those tasks always require heavy load, high accuracy and large work space for manipulators. Traditionally, the maintenance of fusion devices always depends on manual RH. With the development of calculating ability, the intelligent automatic maintenance makes it possible for a fusion device instead of the previous manual operation. As the flexibility of arm and the deformation of manipulator will cause problems, which are mainly inaccuracy and lower efficiency. This paper aims to study an effective way to promote the arm behavior to solve these problems.

Design/methodology/approach

By making use of the experimental advanced superconducting tokamak articulated maintenance arm as a platform, a series of experiments is designed to measure errors of kinematics and to collect the database of the flexible arm. Through studying the data and the arm structure, recurrent neural network (RNN) method was adopted to estimate the deformation of flexible arm and eventually compensate deformation in robot control to achieve higher accuracy.

Findings

By means of delicate RNN modeling, errors of kinematics have been reduced to a smaller order than the RH mode. This intelligent maintenance method will also reduce complexity of operations in maintenance.

Originality/value

This paper presents the use of an artificial intelligent algorithm to solve a nonlinear deformation problem of the flexible arm. The results demonstrate that it is efficient in dealing with this problem in fusion application. The RNN’s successful application has also shown that intelligent algorithms can be widely applied in fusion maintenance.

Details

Industrial Robot: the international journal of robotics research and application, vol. 46 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 January 2016

Yue Zhang, Cheng Wei, Dong Pan and Yang Zhao

– The purpose of this paper is to provide an accurate dynamic model for the flexible cable capture mechanism and to analyze the dynamic characteristics in the capturing process.

Abstract

Purpose

The purpose of this paper is to provide an accurate dynamic model for the flexible cable capture mechanism and to analyze the dynamic characteristics in the capturing process.

Design/methodology/approach

The absolute nodal coordinate formulation (ANCF) that based on the continuum mechanics approach is applied in the capture task using flexible cables. An ANCF cable element in which axial and bending strain energy are taken into account is presented to model the flexible cables. The generalized coordinates of ANCF are absolute displacements and slopes and make no small deformation assumptions; therefore, this element has a remarkable superiority in the large rotation and deformation analysis of flexible cables compared to the conventional floating frame of reference formulation (FFRF). The mass matrix of the cable element is constant, which will reduce the degree of non-linearity of the dynamic equations. The contact force between the steel cables and capture rod is calculated by the non-linear contact dynamic model, in which material and geometry properties of contact bodies are considered.

Findings

The stress distribution of steel cables is investigated in the numerical studies which show that the closer to the ends of the cable, the larger axial forces and smaller bending moments they will be. The reduction of grasping velocity will lead to a decrease in the contact force and the oversize peak value of contact force is more likely to be avoided when reducing the elastic modulus of steel cables to obtain a greater soft capture capability.

Practical implications

The work shows a practical possibility to improve modeling accuracy of the capture mechanism. Results of the analyses can provide references for the design and analysis of the capture task.

Originality/value

The ANCF is first used in the analysis of the capture task with flexible cables, and some useful results which have not been published before are obtained.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 1
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 19 October 2018

H. Zargartalebi, M. Ghalambaz, A. Chamkha, Ioan Pop and Amir Sanati Nezhad

A numerical model of an unsteady laminar free convection flow and heat transfer is studied in a cavity that comprises a vertical flexible thin partition.

Abstract

Purpose

A numerical model of an unsteady laminar free convection flow and heat transfer is studied in a cavity that comprises a vertical flexible thin partition.

Design/methodology/approach

The left and right vertical boundaries are isothermal, while the horizontal boundaries are insulated. Moreover, the thin partition, placed in the geometric centerline of the enclosure, is considered to be hyper elastic and diathermal. Galerkin finite-element methods, the system of partial differential equations along with the appropriate boundary conditions are transformed to a weak form through the fluid-structure interaction and solved numerically.

Findings

The heat transfer characteristics of the enclosure with rigid and flexible partitions are compared. The effect of Rayleigh number and Young’s modulus on the maximum nondimensional stress and final deformed shape of the membrane is addressed.

Originality/value

Incorporation of vertical thin flexible membrane in middle of a cavity has numerous industrial applications, and it could noticeably affect the heat and mass transfer in the enclosure.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 December 2017

Haidong Yu, Chunzhang Zhao, Bin Zheng and Hao Wang

Thin-walled structures inevitably always have manufacturing deviations, which affects the assembly quality of mechanical products. The assembly quality directly determines the…

Abstract

Purpose

Thin-walled structures inevitably always have manufacturing deviations, which affects the assembly quality of mechanical products. The assembly quality directly determines the performances, reliability and service life of the products. To achieve the automatic assembly of large-scale thin-walled structures, the sizing force of the structures with deviations should be calculated, and its assembling ability should be studied before assembly process. The purpose of this study is to establish a precise model to describe the deviations of structures and to study the variation propagation during assembly process.

Design/methodology/approach

Curved thin-walled structures are modeled by using the shell element via the absolute nodal coordinate formulation. Two typical deviation modes of the structure are defined. The generalized elastic force of shell elements with anisotropic materials is deduced based on a continuum mechanics approach to account for the geometric non-linearity. The quasi-static method is introduced to describe the assembly process. The effects of the deviation forms, geometrical parameters of the thin-walled structures and material properties on assembly quality are investigated numerically.

Findings

The geometric non-linearity of structure and anisotropy of materials strongly affect the variation propagation and the assembly quality. The transformation and accumulation effects of the deviations are apparent in the multiple assembly process. The constraints on the structures during assembly can reduce assembly deviation.

Originality/value

The plate element via the absolute nodal coordinate formulation is first introduced to the variation propagation analysis. Two typical shape deviation modes are defined. The elastic force of structures with anisotropic materials is deduced. The variation propagation during the assembly of structures with various geometrical and material parameters is investigated.

1 – 10 of over 2000