Search results

1 – 10 of 420
Article
Publication date: 10 September 2024

Chunliang Niu, BingZhuo Liu, Chunfei Bai, Liming Guo, Lei Chen and Jiwu Tang

In order to improve the efficiency and reliability of simulation analysis for composite riveting structures in engineering products, a comparative study was conducted on different…

Abstract

Purpose

In order to improve the efficiency and reliability of simulation analysis for composite riveting structures in engineering products, a comparative study was conducted on different forms of riveting simulation methods.

Design/methodology/approach

Five different rivent simulation models were established using the finite element method, including rigid element CE, flexible element Rbe3 and beam element, and their results were future compared and analyzed.

Findings

Under the given technical parameters, the simulation method of Rbe3 (with holes) + beam can meet the analysis requirements of complex engineering products in terms of the rationality of rivet load distribution, calculation error and relatively efficient modeling.

Originality/value

This study proposes a simulation method for the riveting structure of carbon fiber composite materials for engineering applications. This method can satisfy the simulation analysis requirements of transportation vehicles in terms of modeling time, computational efficiency and accuracy. The research can provide technical support for the riveting process and mechanical analysis between carbon fiber composite components in transportation products.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 22 August 2022

Long Liu and Songqiang Wan

To make full use of the tensile strength of near surface mounting (NSM) pasted carbon fiber reinforced plastics (CFRP) strips and further increase the flexural bearing capacity…

98

Abstract

Purpose

To make full use of the tensile strength of near surface mounting (NSM) pasted carbon fiber reinforced plastics (CFRP) strips and further increase the flexural bearing capacity and flexibility of reinforced concrete (RC) beams, a new composite reinforcement method using ultra-high performance concrete (UHPC) layer in the compression zone of RC beams is submitted based on embedding CFRP strips in the tension zone of RC beams. This paper aims to discuss the aforementioned points.

Design/methodology/approach

The experimental beam was simulated by ABAQUS, and compared with the experimental results, the validity of the finite element model was verified. On this basis, the reinforced RC beam is used as the control beam, and parameters such as the CFRP strip number, UHPC layer thickness, steel bar ratio and concrete strength are studied through the verified model. In addition, the numerical calculation results of yield strength, ultimate strength, failure deflection and flexibility are also given.

Findings

The flexural bearing capacity of RC beams supported by the new method is 132.3% higher than that of unreinforced beams, and 7.8% higher than that of RC beams supported only with CFRP strips. The deflection flexibility coefficient of the new reinforced RC beam is 8.06, which is higher than that of the unreinforced beam and the reinforced concrete beam with only CFRP strips embedded in the tension zone.

Originality/value

In this paper, a new reinforcement method is submitted, and the effects of various parameters on the ultimate bearing capacity and flexibility of reinforced RC beams are analyzed by the finite element numerical simulation. Finally, the effectiveness of the new method is verified by the analytical formula.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 30 August 2024

Khair Ul Faisal Wani and Nallasivam K.

The purpose of this study is to numerically model the rigid pavement resting on Pasternak soil and to examine its various response parameters and stress resultants like…

Abstract

Purpose

The purpose of this study is to numerically model the rigid pavement resting on Pasternak soil and to examine its various response parameters and stress resultants like deflection, rotation, bending moment and shear force when subjected to aircraft loading.

Design/methodology/approach

The study is carried out using a one-dimensional (1D) beam element based on the finite element method (FEM). Each node in this element has three rotational and three translational degrees of freedom (DOF). MATLAB programming is used to perform the static analysis of rigid pavement.

Findings

Response parameters and stress resultants of the rigid pavement were determined. The FEM used in this work is validated by two closed-form numerical examples, which are in great accord with previous research findings with a maximum divergence of 4.64%, therefore verifying the finite element approach used in the current study. Additionally, various parametric studies have been carried out to study the variations in response parameters and stress resultants.

Research limitations/implications

The investigation at hand focuses exclusively on the static analysis of the pavement. The study constraints pertaining to the preliminary design phase of rigid pavements are such that a comprehensive three-dimensional finite element analysis is deemed unnecessary.

Originality/value

As limited previous research had performed the static analysis of rigid pavement on Pasternak foundation with 6 DOF. Furthermore, no prior study has done seven separate parametric investigations on the static analysis of rigid pavement.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 20 September 2024

Renato Zona, Luca Esposito, Simone Palladino and Vincenzo Minutolo

Heterogeneous and micro-structured materials have been the object of multiscale and homogenization techniques aimed at recognizing the elastic properties of the equivalent…

Abstract

Purpose

Heterogeneous and micro-structured materials have been the object of multiscale and homogenization techniques aimed at recognizing the elastic properties of the equivalent continuum. The proposed investigation deals with the mechanical characterization of the heterogeneous material structured metamaterials through analyzing the ultimate strength using the limit analysis of the Representative Volume Element (RVE). To get the desired material strength, a novel finite element formulation based on the derivation of self-equilibrated solutions through the finite elements devoted to calculating the lower bound theorem has been implemented together with the limit analysis in Melàn’s formulation.

Design/methodology/approach

The finite element formulation is based on discrete mapping of Volterra dislocations in the structure using isoparametric representation. Using standard finite element techniques, the linear operator V, which relates the self-equilibrated internal solicitation to displacement-like nodal parameters, has been built through finite element discretization of displacement and strain.

Findings

The proposed work presented an elastic homogenization of the mechanical properties of an elementary cell with a geometry known in the literature, the isotropic truss. The matrix of elastic constants was calculated by subjecting the RVE to numerical load tests, simulated with a commercial FEM calculation code. This step showed the dependence of the isotropy properties, verified with Zener theory, on the density of the RVE. The isotropy condition of the material is only achieved for certain section ratios between body-centered cubic (BCC) and face-centered cubic (FCC), neglecting flexural effects at the nodes. The density that satisfies Zener’s conditions represents the isotropic geomatics of the isotropic truss.

Originality/value

For the isotropic case, the VFEM procedure was used to evaluate the isotropy of the limit domain and was compared with the Mises–Schleicher limit domain. The evaluation of residual ductility and dissipation energy allowed a measurement parameter for the limit anisotropy to be defined. The novelty of the proposal consisted in the formulation of both the linearized and the nonlinear limit locus of the material; hence, it furnished the starting point for further limit analysis of the structures whose elementary volume has been described through the proposed approach.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 22 August 2024

Sandipan Kumar Das

The boundary integral method (BIM) is very attractive to practicing engineers as it reduces the dimensionality of the problem by one, thereby making the procedure computationally…

Abstract

Purpose

The boundary integral method (BIM) is very attractive to practicing engineers as it reduces the dimensionality of the problem by one, thereby making the procedure computationally inexpensive compared to its peers. The principal feature of this technique is the limitation of all its computations to only the boundaries of the domain. Although the procedure is well developed for the Laplace equation, the Poisson equation offers some computational challenges. Nevertheless, the literature provides a couple of solution methods. This paper revisits an alternate approach that has not gained much traction within the community. The purpose of this paper is to address the main bottleneck of that approach in an effort to popularize it and critically evaluate the errors introduced into the solution by that method.

Design/methodology/approach

The primary intent in the paper is to work on the particular solution of the Poisson equation by representing the source term through a Fourier series. The evaluation of the Fourier coefficients requires a rectangular domain even though the original domain can be of any arbitrary shape. The boundary conditions for the homogeneous solution gets modified by the projection of the particular solution on the original boundaries. The paper also develops a new Gauss quadrature procedure to compute the integrals appearing in the Fourier coefficients in case they cannot be analytically evaluated.

Findings

The current endeavor has developed two different representations of the source terms. A comprehensive set of benchmark exercises has successfully demonstrated the effectiveness of both the methods, especially the second one. A subsequent detailed analysis has identified the errors emanating from an inadequate number of boundary nodes and Fourier modes, a high difference in sizes between the particular solution and the original domains and the used Gauss quadrature integration procedures. Adequate mitigation procedures were successful in suppressing each of the above errors and in improving the solution accuracy to any desired level. A comparative study with the finite difference method revealed that the BIM was as accurate as the FDM but was computationally more efficient for problems of real-life scale. A later exercise minutely analyzed the heat transfer physics for a fin after validating the simulation results with the analytical solution that was separately derived. The final set of simulations demonstrated the applicability of the method to complicated geometries.

Originality/value

First, the newly developed Gauss quadrature integration procedure can efficiently compute the integrals during evaluation of the Fourier coefficients; the current literature lacks such a tool, thereby deterring researchers to adopt this category of methods. Second, to the best of the author’s knowledge, such a comprehensive error analysis of the solution method within the BIM framework for the Poisson equation does not currently exist in the literature. This particular exercise should go a long way in increasing the confidence of the research community to venture into this category of methods for the solution of the Poisson equation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 July 2024

Hui-Zhong Xiong, Xin Yang, Yong-Nan He and Yong Huang

This paper aims to optimize cable-stayed force in asymmetric one-tower cable-stayed bridge formation using an improved particle swarm algorithm. It compares results with the…

Abstract

Purpose

This paper aims to optimize cable-stayed force in asymmetric one-tower cable-stayed bridge formation using an improved particle swarm algorithm. It compares results with the traditional unconstrained minimum bending energy method.

Design/methodology/approach

This paper proposes an improved particle swarm algorithm to optimize cable-stayed force in bridge formation. It formulates a quadratic programming mathematical model considering the sum of bending energies of the main girder and bridge tower as the objective function. Constraints include displacements, stresses, cable-stayed force, and uniformity. The algorithm is applied to optimize the formation of an asymmetrical single-tower cable-stayed bridge, combining it with the finite element method.

Findings

The study’s findings reveal significant improvements over the minimum bending energy method. Results show that the structural displacement and internal force are within constraints, the maximum bending moment of the main girder decreases, resulting in smoother linear shape and more even internal force distribution. Additionally, the tower top offset decreases, and the bending moment change at the tower-beam junction is reduced. Moreover, diagonal cable force and cable force increase uniformly with cable length growth.

Originality/value

The improved particle swarm algorithm offers simplicity, effectiveness, and practicality in optimizing bridge-forming cable-staying force. It eliminates the need for arbitrary manual cable adjustments seen in traditional methods and effectively addresses the optimization challenge in asymmetric cable-stayed bridges.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 26 July 2024

Guilherme Fonseca Gonçalves, Rui Pedro Cardoso Coelho and Igor André Rodrigues Lopes

The purpose of this research is to establish a robust numerical framework for the calibration of macroscopic constitutive parameters, based on the analysis of polycrystalline RVEs…

Abstract

Purpose

The purpose of this research is to establish a robust numerical framework for the calibration of macroscopic constitutive parameters, based on the analysis of polycrystalline RVEs with computational homogenisation.

Design/methodology/approach

This framework is composed of four building-blocks: (1) the multi-scale model, consisting of polycrystalline RVEs, where the grains are modelled with anisotropic crystal plasticity, and computational homogenisation to link the scales, (2) a set of loading cases to generate the reference responses, (3) the von Mises elasto-plastic model to be calibrated, and (4) the optimisation algorithms to solve the inverse identification problem. Several optimisation algorithms are assessed through a reference identification problem. Thereafter, different calibration strategies are tested. The accuracy of the calibrated models is evaluated by comparing their results against an FE2 model and experimental data.

Findings

In the initial tests, the LIPO optimiser performs the best. Good results accuracy is obtained with the calibrated constitutive models. The computing time needed by the FE2 simulations is 5 orders of magnitude larger, compared to the standard macroscopic simulations, demonstrating how this framework is suitable to obtain efficient micro-mechanics-informed constitutive models.

Originality/value

This contribution proposes a numerical framework, based on FE2 and macro-scale single element simulations, where the calibration of constitutive laws is informed by multi-scale analysis. The most efficient combination of optimisation algorithm and definition of the objective function is studied, and the robustness of the proposed approach is demonstrated by validation with both numerical and experimental data.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 7 August 2024

Kaveh Salmalian, Ali Alijani and Habib Ramezannejad Azarboni

In this research, the free vibration sensitivity analysis of cracked fiber metal laminated (FML) beams is investigated numerically and experimentally. The effects of single and…

Abstract

Purpose

In this research, the free vibration sensitivity analysis of cracked fiber metal laminated (FML) beams is investigated numerically and experimentally. The effects of single and double cracks on the frequency of the cantilever beams are simulated using the finite element method (FEM) and compared to the experimental results.

Design/methodology/approach

In FEM analysis, the crack defect is simulated by the contour integral technique without considering the crack growth. The specimens are fabricated with an aluminum sheet, woven carbon fiber and epoxy resin. The FML specimens are constructed by bonding five layers as [carbon fiber-epoxy/Al/carbon fiber-epoxy/Al/carbon fiber-epoxy]. First, the location and length of cracks are considered input factors for the frequency sensitivity analysis. Then, the design of the experiment is produced in the cases of single and double cracks to compute the frequency of the beams in the first and second modes using the FEM. The mechanical shaker is used to determine the natural frequency of the specimens. In addition, the predicted response values of the frequency for the beam are used to compare with the experimental results.

Findings

Consequently, the results of the sensitivity analysis demonstrate that the location and length of the crack have significant effects on the modes.

Originality/value

Effective interaction diagrams are introduced to investigate crack detection for input factors, including the location and length of cracks in the cases of single and double cracks.

Details

International Journal of Structural Integrity, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 27 November 2023

Davood Javanmardi and Mohammad Ali Rezvani

Bearings are critical components used to support loads and facilitate motion for rotating and sliding parts of the machinery. Bearing malfunctions can cause catastrophic failures…

Abstract

Purpose

Bearings are critical components used to support loads and facilitate motion for rotating and sliding parts of the machinery. Bearing malfunctions can cause catastrophic failures. Hence, failure analysis and endeavors to improve bearing performance are essential discussions for worldwide designers, manufacturers and end users of vital machinery. This study aims to investigate a type of roller bearing from the railway industry with premature failures. The task arises because locomotives’ maintenance and service life quality are vital to railway operations while providing transportation services for the nation. To assist in maintaining the designated locomotives, the present study scrutinizes the causes of failure of heavy-duty roller bearings from locomotive bogie axleboxes.

Design/methodology/approach

It is intended to inspect this bearing service life and statistically scrutinize its design parameters to reveal the failures’ shortcomings and origins. The significant measures include examinations of their failures’ primary and vital factors by comparing them with a real-life service history of 16 roller bearings of the same type. The bearings come from the axleboxes of a locomotive bogie with an axle load of 20 tons. The bearing loads are estimated using the EN13104 standard document and confirmed by the finite element method using ABAQUS engineering software. To validate the finite element modeling results, the bearings’ stress analysis is performed using the Hertzian contact theory that demonstrated perfect conformity. The said methods are also used to search for the areas susceptible to failures in these bearings. With the inclusion and exploitation of the bearing maintenance conditions and the logbook recordings of the locomotives for the past seven years, the critical cause for this type of bearing’s failures is surveyed and discussed.

Findings

With the inclusion and exploitation of the bearing maintenance conditions and the logbook recordings of the locomotives for the past seven years, the critical cause for this type of bearing’s failures is surveyed and discussed. As a crucial result, it is found that deprived maintenance and inadequate lubrication are the root causes of the loss of the selected bearings.

Originality/value

For the designated locomotives, the origins of the heavy-duty roller bearing failures and its design shortcomings are revealed by examining and comparing them with a real-life service history of many of the same types of bearings. The novelty of the research is in using the combination of the methods mentioned above and its decent outcome.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 22 March 2024

Shahin Alipour Bonab, Alireza Sadeghi and Mohammad Yazdani-Asrami

The ionization of the air surrounding the phase conductor in high-voltage transmission lines results in a phenomenon known as the Corona effect. To avoid this, Corona rings are…

Abstract

Purpose

The ionization of the air surrounding the phase conductor in high-voltage transmission lines results in a phenomenon known as the Corona effect. To avoid this, Corona rings are used to dampen the electric field imposed on the insulator. The purpose of this study is to present a fast and intelligent surrogate model for determination of the electric field imposed on the surface of a 120 kV composite insulator, in presence of the Corona ring.

Design/methodology/approach

Usually, the structural design parameters of the Corona ring are selected through an optimization procedure combined with some numerical simulations such as finite element method (FEM). These methods are slow and computationally expensive and thus, extremely reducing the speed of optimization problems. In this paper, a novel surrogate model was proposed that could calculate the maximum electric field imposed on a ceramic insulator in a 120 kV line. The surrogate model was created based on the different scenarios of height, radius and inner radius of the Corona ring, as the inputs of the model, while the maximum electric field on the body of the insulator was considered as the output.

Findings

The proposed model was based on artificial intelligence techniques that have high accuracy and low computational time. Three methods were used here to develop the AI-based surrogate model, namely, Cascade forward neural network (CFNN), support vector regression and K-nearest neighbors regression. The results indicated that the CFNN has the highest accuracy among these methods with 99.81% R-squared and only 0.045468 root mean squared error while the testing time is less than 10 ms.

Originality/value

To the best of the authors’ knowledge, for the first time, a surrogate method is proposed for the prediction of the maximum electric field imposed on the high voltage insulators in the presence Corona ring which is faster than any conventional finite element method.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 420