Search results

1 – 10 of over 96000
Article
Publication date: 17 May 2023

Lulu Huang, Xiang Huang and Shuanggao Li

Large size of aircraft assembly tooling structure and complex measurement environment exist. The laid enhanced reference points (ERS) are subject to a combination of nonuniform…

Abstract

Purpose

Large size of aircraft assembly tooling structure and complex measurement environment exist. The laid enhanced reference points (ERS) are subject to a combination of nonuniform temperature fields and measurement errors, resulting in increased measurement registration errors. In view of the nonuniform temperature field and measurement errors affecting the ERS point registration problem, the purpose of this paper is to propose a neural network-based ERS point registration compensation method for large-size measurement fields under a nonuniform temperature field.

Design/methodology/approach

The approach is to collect ERS point information and temperature data, normalize the collected data to complete the data structure design and complete the construction of the neural network prediction model by data training. The data learning is performed to complete the prediction model construction, and the prediction model is used to complete the compensation analysis of ERS points. Finally, the algorithm is verified through experiments and engineering practice.

Findings

Experimental results show that the proposed neural network-based ERS point prediction and compensation method for nonuniform temperature fields effectively predicts ERS point deformation under nonuniform temperature fields compared with the conventional method. After the compensation analysis, the registration error is effectively reduced to improve registration accuracy. Reducing the combined effect of environmental nonuniform temperature field and measurement error has apparent advantages.

Originality/value

The method reduces the registration error caused by combining a nonuniform temperature field and measurement error. It can be used for aircraft assembly site prediction and registration error compensation analysis, which is essential to improve measurement accuracy further.

Details

Robotic Intelligence and Automation, vol. 43 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Book part
Publication date: 28 September 2015

Md Shah Azam

Information and communications technology (ICT) offers enormous opportunities for individuals, businesses and society. The application of ICT is equally important to economic and…

Abstract

Information and communications technology (ICT) offers enormous opportunities for individuals, businesses and society. The application of ICT is equally important to economic and non-economic activities. Researchers have increasingly focused on the adoption and use of ICT by small and medium enterprises (SMEs) as the economic development of a country is largely dependent on them. Following the success of ICT utilisation in SMEs in developed countries, many developing countries are looking to utilise the potential of the technology to develop SMEs. Past studies have shown that the contribution of ICT to the performance of SMEs is not clear and certain. Thus, it is crucial to determine the effectiveness of ICT in generating firm performance since this has implications for SMEs’ expenditure on the technology. This research examines the diffusion of ICT among SMEs with respect to the typical stages from innovation adoption to post-adoption, by analysing the actual usage of ICT and value creation. The mediating effects of integration and utilisation on SME performance are also studied. Grounded in the innovation diffusion literature, institutional theory and resource-based theory, this study has developed a comprehensive integrated research model focused on the research objectives. Following a positivist research paradigm, this study employs a mixed-method research approach. A preliminary conceptual framework is developed through an extensive literature review and is refined by results from an in-depth field study. During the field study, a total of 11 SME owners or decision-makers were interviewed. The recorded interviews were transcribed and analysed using NVivo 10 to refine the model to develop the research hypotheses. The final research model is composed of 30 first-order and five higher-order constructs which involve both reflective and formative measures. Partial least squares-based structural equation modelling (PLS-SEM) is employed to test the theoretical model with a cross-sectional data set of 282 SMEs in Bangladesh. Survey data were collected using a structured questionnaire issued to SMEs selected by applying a stratified random sampling technique. The structural equation modelling utilises a two-step procedure of data analysis. Prior to estimating the structural model, the measurement model is examined for construct validity of the study variables (i.e. convergent and discriminant validity).

The estimates show cognitive evaluation as an important antecedent for expectation which is shaped primarily by the entrepreneurs’ beliefs (perception) and also influenced by the owners’ innovativeness and culture. Culture further influences expectation. The study finds that facilitating condition, environmental pressure and country readiness are important antecedents of expectation and ICT use. The results also reveal that integration and the degree of ICT utilisation significantly affect SMEs’ performance. Surprisingly, the findings do not reveal any significant impact of ICT usage on performance which apparently suggests the possibility of the ICT productivity paradox. However, the analysis finally proves the non-existence of the paradox by demonstrating the mediating role of ICT integration and degree of utilisation explain the influence of information technology (IT) usage on firm performance which is consistent with the resource-based theory. The results suggest that the use of ICT can enhance SMEs’ performance if the technology is integrated and properly utilised. SME owners or managers, interested stakeholders and policy makers may follow the study’s outcomes and focus on ICT integration and degree of utilisation with a view to attaining superior organisational performance.

This study urges concerned business enterprises and government to look at the environmental and cultural factors with a view to achieving ICT usage success in terms of enhanced firm performance. In particular, improving organisational practices and procedures by eliminating the traditional power distance inside organisations and implementing necessary rules and regulations are important actions for managing environmental and cultural uncertainties. The application of a Bengali user interface may help to ensure the productivity of ICT use by SMEs in Bangladesh. Establishing a favourable national technology infrastructure and legal environment may contribute positively to improving the overall situation. This study also suggests some changes and modifications in the country’s existing policies and strategies. The government and policy makers should undertake mass promotional programs to disseminate information about the various uses of computers and their contribution in developing better organisational performance. Organising specialised training programs for SME capacity building may succeed in attaining the motivation for SMEs to use ICT. Ensuring easy access to the technology by providing loans, grants and subsidies is important. Various stakeholders, partners and related organisations should come forward to support government policies and priorities in order to ensure the productive use of ICT among SMEs which finally will help to foster Bangladesh’s economic development.

Details

E-Services Adoption: Processes by Firms in Developing Nations
Type: Book
ISBN: 978-1-78560-325-9

Keywords

Article
Publication date: 28 November 2023

Xindang He, Run Zhou, Zheyuan Liu, Suliang Yang, Ke Chen and Lei Li

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Abstract

Purpose

The purpose of this paper is to provide a comprehensive review of a non-contact full-field optical measurement technique known as digital image correlation (DIC).

Design/methodology/approach

The approach of this review paper is to introduce the research pertaining to DIC. It comprehensively covers crucial facets including its principles, historical development, core challenges, current research status and practical applications. Additionally, it delves into unresolved issues and outlines future research objectives.

Findings

The findings of this review encompass essential aspects of DIC, including core issues like the subpixel registration algorithm, camera calibration, measurement of surface deformation in 3D complex structures and applications in ultra-high-temperature settings. Additionally, the review presents the prevailing strategies for addressing these challenges, the most recent advancements in DIC applications across quasi-static, dynamic, ultra-high-temperature, large-scale and micro-scale engineering domains, along with key directions for future research endeavors.

Originality/value

This review holds a substantial value as it furnishes a comprehensive and in-depth introduction to DIC, while also spotlighting its prospective applications.

Details

Multidiscipline Modeling in Materials and Structures, vol. 20 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 10 December 2021

Pingan Zhu, Chao Zhang and Jun Zou

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the…

Abstract

Purpose

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the area of manufacturing.

Design/methodology/approach

No methodology was used because the paper is a review article.

Findings

no fundings.

Originality/value

Herein, the historical development, main strengths and measurement setup of DIC are introduced. Subsequently, the basic principles of the DIC technique are outlined in detail. The analysis of measurement accuracy associated with experimental factors and correlation algorithms is discussed and some useful recommendations for reducing measurement errors are also offered. Then, the utilization of DIC in different manufacturing fields (e.g. cutting, welding, forming and additive manufacturing) is summarized. Finally, the current challenges and prospects of DIC in intelligent manufacturing are discussed.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 1 December 2005

Andy Neely

This paper provides an update of Neely et al.'s (1995) literature review “Performance measurement system design”. It was commissioned to appear in a special issue of the…

20627

Abstract

Purpose

This paper provides an update of Neely et al.'s (1995) literature review “Performance measurement system design”. It was commissioned to appear in a special issue of the International Journal of Operations & Production Management to celebrate the journal's 25th anniversary.

Design/methodology/approach

The paper employs a citation/co‐citation analysis of work in the field of performance measurement to explore developments in the field globally.

Findings

The paper argues that scholars working in the field of performance measurement agree about the key research questions despite the fact that they come from different disciplinary backgrounds. The paper identifies the key contributors to the field based on a citation/co‐citation analysis and argues that the field is now entering a phase of empirical investigation and theoretical verification of some core concepts.

Research limitations/implications

The research reported in the paper is limited to work that deals directly with performance measurement. It excludes related research – such as literature on management control and performance management – and clearly could be extended to include these literatures.

Originality/value

The paper will be valuable to scholars working in the field of performance measurement who wish to understand how the field has developed and evolved and/or those who are interested in avenues for future research.

Details

International Journal of Operations & Production Management, vol. 25 no. 12
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 4 September 2017

Stephan Russenschuck

The purpose of this paper is to establish the mathematical foundations of magnetic measurement methods based on translating-coil and rotating-coil magnetometers for accelerator…

Abstract

Purpose

The purpose of this paper is to establish the mathematical foundations of magnetic measurement methods based on translating-coil and rotating-coil magnetometers for accelerator magnets and solenoids. These field transducers allow a longitudinal scanning of the field distribution, but require a sophisticated post-processing step to extract the coefficients of the Fourier–Bessel series (known as pseudo-multipoles or generalized gradients) as well as a novel design of the rotating coil magnetometers.

Design/methodology/approach

Calculating the transversal field harmonics as a function of the longitudinal position in the magnet, or measuring these harmonics with a very short, rotating induction-coil scanner, allows the extraction of the coefficients of a Fourier–Bessel series, which can then be used in the thin lens approximation of the end regions of accelerator magnets.

Findings

The extraction of the leading term in the Fourier–Bessel series requires the solution of a differential equation by means of a Fourier transform. This yields a natural way to de-convolute the measured distribution of the multipole content. The author has shown that the measurement technique requires iso-parametric coils to avoid interception of the longitudinal field component. The compensation of the main signal cannot be done with the classical arrangement of search coils at different radii, because no easy scaling law exists. A new design of an iso-perimetric induction coil has been found.

Research limitations/implications

In the literature, it is stated that the pseudo-multipoles can be extracted from field computations or measurements. While this is true for computations, the author shows that the measurement of the field harmonics must be done with iso-parametric coils because otherwise the leading term in the Fourier–Bessel series cannot be extracted.

Practical implications

The author has now established the theory behind a number of field transducers, such as the moving fluxmeter, the rotational coil scanner and the solenoidal field transducer.

Originality/value

This paper brought together the known theory of the orthogonal expansion method with the methods and tools for magnetic field measurements to establish a field description in accelerator magnets.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 August 2018

Jacek Horiszny

The paper presents the analysis of magnetic field that surrounds the power transformer after it has been switched off. The purpose of this paper is to determine the possibility of…

Abstract

Purpose

The paper presents the analysis of magnetic field that surrounds the power transformer after it has been switched off. The purpose of this paper is to determine the possibility of defining the residual fluxes in the legs of the transformer based on the measurement of this field. It was also intended to determine the type and the location of magnetic sensors.

Design/methodology/approach

Numerical analysis of the magnetic field was performed. A three-dimensional model of the transformer’s magnetic core was created in the Flux 3D simulation program. The analysis was concerned with an oil-filled transformer and a dry transformer. The magnetic field of Earth was taken into account.

Findings

The research has shown that magnetic induction of the leakage field produced by residual magnetization of the core is comparable to the magnetic induction of the Earth’s field. It was also found that the measurement of the magnetic induction should be performed as close as possible to the core. The interior of the tank turned out to be a convenient space for the placement of the sensors.

Research limitations/implications

The influence of external ferromagnetic objects, and devices generating magnetic field, on the measurement was not considered. It should be taken into account in the future work.

Originality/value

On the basis of the analysis, it was proposed to measure the magnetic induction vector of the leakage field at three points. The sensors should be placed in front of the columns at a position that is half of their height. The measurement can be performed with satisfactory accuracy by sensors located on the surface of the windings.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 37 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 July 2015

Arno Thielens, Sam Agneessens, Günter Vermeeren, Leen Verloock, Hendrik Rogier, Luc Martens and Wout Joseph

The purpose of this paper is to numerically determine the distribution of electric fields registered by a personal exposimeter (PEM) used for the Global System for Mobile…

Abstract

Purpose

The purpose of this paper is to numerically determine the distribution of electric fields registered by a personal exposimeter (PEM) used for the Global System for Mobile Communications (GSM) around 900 MHz (GSM900) downlink (DL) band and compare these with calibration measurements of PEMs worn by real human subjects.

Design/methodology/approach

Numerical simulations using the Virtual Family Male (VFM) are carried out at 950 MHz in order to determine the electric fields surrounding the phantom in realistic, far-field environments. These electric fields can be used to determine the distribution of a PEM’s response when worn by the VFM. Simultaneously, calibration measurements in an anechoic chamber are carried out using a real PEM worn by two different subjects, in order to determine the PEM’s response experimentally.

Findings

Both the numerical simulations and the measurements show that a PEM will on average underestimate the incident electric fields in the GSM900 DL band and that the variation (expressed in terms of the 95 percent confidence interval and the interquartile distance) on its response is relatively large: a 95 percent confidence interval of 22 dB and an interquartile distance of 7.3 dB are found in a realistic environment using numerical simulations, while the calibration measurements show interquartile distances up to 12 dB. In terms of variation there is an excellent agreement between simulations and measurements.

Originality/value

This paper proves that numerical simulations may be used as a replacement for the more time- and work-consuming calibration measurements if the variation of a PEM’s response is studied.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 23 August 2019

Károly Marák, Sándor Bilicz and József Pávó

The purpose of this study is to introduce a novel method for the measurement of electromagnetic material parameters.

Abstract

Purpose

The purpose of this study is to introduce a novel method for the measurement of electromagnetic material parameters.

Design/methodology/approach

The main idea behind the approach is the fact that for slabs with elongated shapes, the intensity of the backscattered field and the electromagnetic resonance frequency corresponding to the length of the sample are dependent on the conductivity of the sample’s material.

Findings

It is shown that for a known scattered field and resonance frequency, it is possible to formulate an inverse problem as to the calculation of the conductivity of the sample’s material at the considered frequencies. To investigate the applicability of the method, demonstrative experiments are performed during which the micro-Doppler effect is used to increase the measurement accuracy. The idea is extended to the case of anisotropic samples, with slight modifications proposed to the experimental setup in the case of significant anisotropy in the investigated material.

Practical implications

The measurement method may prove useful for the investigation of the high-frequency conductive properties of certain materials of interest.

Originality/value

To the best of the authors’ knowledge, this is the first time the use of the micro-Doppler effect is proposed for the purpose of the measurement of material parameters.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 38 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 February 2022

Jun Peng, Jiaming Bian, Shuhai Jia, Xilong Kang, Hongqiang Yu and Yaowen Yang

This study aims to address the issue of high-precision measurement of AC electric field. An electro-optical sensor with high sensitivity is proposed for this purpose.

Abstract

Purpose

This study aims to address the issue of high-precision measurement of AC electric field. An electro-optical sensor with high sensitivity is proposed for this purpose.

Design/methodology/approach

The proposed sensor combines electromagnetic induction and fiber Bragg grating (FBG) sensing techniques. It is composed of a sensing probe, a piece or stack of piezoelectric ceramics (PZT) and an FBG. A signal processing circuit is designed to rectify and amplify the induced voltage. The processed signal is applied to the PZT and the deformation of PZT is detected by FBG. Theoretical calculation and simulation are conducted to verify the working principle of the probe. The sensor prototype is fabricated and its performance is tested.

Findings

The results of this study show that the sensor has good linearity and repeatability. The sensor sensitivity is 0.061 pm/Vm−1 in the range from 250 to 17,500 V/m, enabling a measurement resolution of electric field strength of 16.3 V/m. The PZT stack is used to enhance the sensor sensitivity and the resolution can be improved up to 3.15 V/m.

Originality/value

A flexure hinge lever mechanism is used to amplify the deformation of PZT for further enhancement of sensitivity. The results show that the proposed sensor has high sensitivity and can be used for the accurate measurement of an electric field. The proposed sensor could have potential use for electric field measurement in the power industry.

Details

Sensor Review, vol. 42 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

1 – 10 of over 96000