Search results

1 – 10 of 339
Article
Publication date: 1 November 2013

M.A. Ramadan, W.M. Raslan, M. Abdel-Hady and A. Hebeish

This research focuses on the use of ultrasonic waves to aid ultrasonic aided hydrogen peroxide (H2O2) bleaching (UAB) of cellulose acetate fabrics. UAB is studied under different…

Abstract

This research focuses on the use of ultrasonic waves to aid ultrasonic aided hydrogen peroxide (H2O2) bleaching (UAB) of cellulose acetate fabrics. UAB is studied under different conditions and based on the results obtained, the following conditions are established: H2O2 concentration, 10g/l; reaction temperature, 30°C; reaction time, 3 min; and pH, 9.0. The bleaching effect is expressed in terms of acetyl content, loss in fabric weight, whiteness index, roughness degree, tensile strength and elongation at break when the cellulose acetate fabrics are bleached per the UAB method as well as the conventional method. A comparison between the two methods with regards to these properties reveal the superiority of the UAB method with its novelty and fast inducing bleaching under the influence of cavitations and extra energy generated thereof; the cavitations are caused by the high frequency of the ultrasonic waves. Electron scanning microscopies of the UAB bleached fabric display a smooth and partially swollen surface morphology opposite those of conventionally bleached fabric in which the surfaces are irregular, rough and scratched bleached. In addition, UAB bleached fabric displays a significantly higher dyeability towards disperse dyes than the untreated fabric and fabric bleached by using the conventional method.

Details

Research Journal of Textile and Apparel, vol. 17 no. 4
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 1 October 1955

A.J. Hall

Wherever corrosion occurs it can be the cause of many difficulties and much frustration of effort, but it is believed that in no type of works can corrosion be so wasteful of…

Abstract

Wherever corrosion occurs it can be the cause of many difficulties and much frustration of effort, but it is believed that in no type of works can corrosion be so wasteful of materials and have so adverse an effect on output as in those works where textile materials are bleached, dyed, printed and finished. This can be readily understood when it is recognised that in the processing of textile yarns, fabrics and garments the results of corrosion not only influence the working of a machine so that this may break down and need repair or replacement, but the products of corrosion may become transferred to the textile material so as to interfere with the desired effects of the processing and thus cause the material to be seriously weakened or acquire some characteristic of colour or handle detrimental to its use or consumer appeal. The following article indicates the complexity of corrosion problems that can occur.

Details

Anti-Corrosion Methods and Materials, vol. 2 no. 10
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 11 February 2019

Selin Hanife Eryuruk

The main factors affecting consumers when selecting denim garments are aesthetic, appearance and fashion. Besides these factors, comfort and performance properties of the denim…

Abstract

Purpose

The main factors affecting consumers when selecting denim garments are aesthetic, appearance and fashion. Besides these factors, comfort and performance properties of the denim garments during usage are very important. The purpose of this paper is to determine the effects of different finishing processes on the performance properties of 100 percent cotton and 98 percent cotton+2 percent elastane denim fabrics.

Design/methodology/approach

The research design for this study consists of experimental study. In order to evaluate the effects of finishing on the performance properties of fabrics, eight types of fabrics were selected for evaluation. Rigid, resin, bleaching and softening type fabrics with and without elastane were analyzed statistically.

Findings

The results obtained in the study clearly showed that the types of finishing and elastane fiber in the fabric structure had a significant influence on mechanical and comfort properties of denim fabrics.

Originality/value

As a result of the literature review, it was seen that there were limited studies concerning mechanical, functional and comfort properties of denim fabrics together. In this study, the effects of finishing processes on the tear strength, stiffness, drape, mechanical and thermal comfort characteristics were deeply evaluated.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 10 April 2017

Md. Asadul Hoque, Md. Anwarul Kabir Bhuiya, Md. Saiduzzaman, Md. Ashadul Islam and Mubarak A. Khan

This paper aim to comparatively study of mechanical properties of gamma radiation treated raw and polyethylene glycol modified bleached jute reinforced polyester composite. The…

Abstract

Purpose

This paper aim to comparatively study of mechanical properties of gamma radiation treated raw and polyethylene glycol modified bleached jute reinforced polyester composite. The natural fiber-reinforced composite has been a wide area of research, and it is the preferred choice due to its superior physical and mechanical properties like low density, stiffness and light weight. Among several natural fibers, jute is one that has good potential as reinforcement in polymer composite. Jute fibers biodegradability, low cost and moderate mechanical properties make it as a preferable reinforcement material in the development of polymer matrix composites.

Design/methodology/approach

In the present work, raw jute fabrics-reinforced polyester composite (as RJPC) and polyethylene glycol (PEG)-modified bleached jute fabrics-reinforced polyester composite (as MBJPC) were fabricated by the heat-press molding technique at 120°C for 5 min at a pressure of 5 tons. Prior to the composite formulation, low lignin content bleached jute fabrics were chemically modified with PEG for the better compatibility of the fabrics with the polyester matrix and enhancing elongation properties. All the composites irradiated with different gamma radiation dose in the range of 2 to 14 kGy.

Findings

The irradiated composites showed highest improved of mechanical properties at the 10 kGy γ-radiation dose. However, the hard and sunlight-sensitive high lignin content γ-RJPC showed higher mechanical properties except elongation properties compared to that of low lignin content γ-MBJPC.

Originality/value

After the γ-ray irradiation, both the γ-RJPC and γ-MBJPC developed high degree of cross-linking among the polyester molecules and thereto fabrics with the consequence of significant changed of surface morphology as observed by atomic force microscopy.

Details

World Journal of Engineering, vol. 14 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 August 2019

Seval Uyanik and Kubra Hatice Kaynak

Elastane yarns contribute significant elastic properties to all types of fabrics and these properties for very important for wears including tights, sportswear, under wear, casual…

Abstract

Purpose

Elastane yarns contribute significant elastic properties to all types of fabrics and these properties for very important for wears including tights, sportswear, under wear, casual wear, swimwear, corsetry, etc. in terms of appearance, comfort and duration of wear. The paper aims to discuss this issue.

Design/methodology/approach

It is investigated with this study strength, fatigue and bagging properties of plated plain knitted fabrics containing different rates of elastane.

Findings

The study showed that single jersey, not having elastane and having the lowest fabric tightness, has the lowest bursting strength, the highest fatigue loading values in high extensions, the lowest fatigue height values and the worst bagging behavior. On the contrary of single jersey, full elastane fabric has the exact opposite characteristics considering the fabric properties examined.

Originality/value

Fabric with 1×1 elastane and fabric with 2×1 elastane is similar, and these fabrics show bagging behavior better than single jersey and worse than full elastane fabric whereas the other properties of these fabrics are close to full elastane fabric.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 9 November 2010

K. Chakvattanatham, S. Phattanarudee and S. Kiatkamjornwong

The purpose of this paper is to prepare anionically surface‐modified organic pigment/binder ink jet inks for printing on chitosan‐pre‐treated silk fabrics.

Abstract

Purpose

The purpose of this paper is to prepare anionically surface‐modified organic pigment/binder ink jet inks for printing on chitosan‐pre‐treated silk fabrics.

Design/methodology/approach

Anionically surface‐modified organic pigment/binder ink jet inks were prepared in four colours (cyan, magenta, yellow and black). The pigment‐to‐binder ratio was controlled at 1:6.4 for the cyan, magenta and yellow inks, and 1:3.4 for the black ink. Ink formulations (by weight) were assembled and mixed as follows: 8 per cent pigment dispersion, 10 per cent diethylene glycol, 12 per cent glycerol, 5 per cent urea, 10 per cent polyacrylate emulsion binder and 55 per cent deionised water. They were characterised in terms of their particle size, zeta‐potential, particle morphology, viscosity, surface tension and pH. The inks were printed onto silk or the chitosan pre‐treated silk fabrics using a piezo‐type ink jet printer. The fabrics were then heat cured and analysed for the effect of chitosan pre‐treatment on colour gamut, wash fastness and crock fastness.

Findings

The formulated ink jet inks yielded an acceptably good ink jetting reliability, one‐year stability and printability. The chitosan pre‐treated silk fabrics gave a wider colour gamut and colour saturation than the non‐treated one. Crock fastness and wash fastness of the chitosan pre‐treated fabrics were relatively better than those of non‐treated fabrics.

Research limitations/implications

The surface‐modified pigments are transparent and thus their inks printed on the chitosan pre‐treated fabrics produced slightly low K/S values of cyan, magenta, yellow, and black colours because the limited chitosan concentration in the pre‐treatment is controlled by its solubility in acidic solution. The higher loading of chitosan pre‐treatment gave higher K/S values and a stiffer touch of the fabrics.

Practical implications

The water‐based pigmented inks having the sulphonate group on the pigment surface can be printed on the fabric surface pre‐treated with chitosan molecules which have the protonated amino groups to give good colour appearance. It is anticipated that this type of ink can be applied to any textile surface which has been pre‐treated with the protonated chitosan.

Originality/value

The modified organic pigments having the sulphonate group on their surface can be used to produce novel water‐based ink jet inks which can print on the chitosan pre‐treated silk fabric. Ionic interactions between the sulphonate group of the pigment and protonated amino groups of chitosan in conjunction with polyacrylate binder enhance colour strength, widen colour gamut and chroma, and produce good adhesion for fabric operational properties such as wash fastness and crock fastness.

Details

Pigment & Resin Technology, vol. 39 no. 6
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 29 May 2019

Marjo Määttänen, Sari Asikainen, Taina Kamppuri, Elina Ilen, Kirsi Niinimäki, Marjaana Tanttu and Ali Harlin

While aiming to create methods for fibre recycling, the question of colours in waste textiles is also in focus; whether the colour should be kept or should be removed while…

5920

Abstract

Purpose

While aiming to create methods for fibre recycling, the question of colours in waste textiles is also in focus; whether the colour should be kept or should be removed while recycling textile fibre. More knowledge is needed for colour management in a circular economy approach.

Design/methodology/approach

The research included the use of different dye types in a cotton dyeing process, the process for decolourizing and the results. Two reactive dyes, two direct dyes and one vat dye were used in the study. Four chemical treatment sequences were used to evaluate colour removal from the dyed cotton fabrics, namely, HCE-A, HCE-P-A, HCE-Z-P-A and HCE-Y-A.

Findings

The objective was to evaluate how different chemical refining sequences remove colour from direct, reactive and vat dyed cotton fabrics, and how they influence the specific cellulose properties. Dyeing methods and the used refining sequences influence the degree of colour removal. The highest achieved final brightness of refined cotton materials were between 71 and 91 per cent ISO brightness, depending on the dyeing method used.

Research limitations/implications

Only cotton fibre and three different colour types were tested.

Practical implications

With cotton waste, it appears to be easier to remove the colour than to retain it, especially if the textile contains polyester residues, which are desired to be removed in the textile refining stage.

Originality/value

Colour management in the CE context is an important new track to study in the context of the increasing amount of textile waste used as a raw material.

Details

Research Journal of Textile and Apparel, vol. 23 no. 2
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 6 March 2017

Janarthanan M. and Senthil Kumar M.

Medical textile is one aspect of technical textiles and it is classified according to performance and functional properties for hygienic and healthcare products. Seaweeds have…

Abstract

Purpose

Medical textile is one aspect of technical textiles and it is classified according to performance and functional properties for hygienic and healthcare products. Seaweeds have curative powers for curing most degenerative diseases. The paper aims to discuss these issues.

Design/methodology/approach

The present study focusses on the extraction of dyes from five seaweeds such as Ulva reticulata, Ulva lactuca, Sargassum wightii, Padina tetrastomatica and Acanthophora spicefera. The presence of bioactive compounds, antioxidant and antimicrobial properties of dye extracted from seaweeds was analysed. The dye extracted from green seaweed was applied on cotton fabric to obtain antimicrobial and other properties used to make non- implantable materials.

Findings

A maximum antioxidant inhibition percentage of 86.48+2.84 and a maximum antibacterial activity of 27 mm inhibition zone were obtained on the fabric treated with the dye extract from the Ulva lactuca seaweed. The physical properties such as tensile strength and tearing strength did not show much significant difference in untreated and treated fabric. The air permeability, water absorbency and wicking behaviour of treated fabric were reduced compared with untreated fabric. The washing and rubbing properties of treated fabric were very good after repeated washing.

Originality/value

This bioactive fabric has been used for non-implantable materials such as wound healing, face mask, surgical gowns and hygienic textiles in recent years.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 25 October 2018

Amira E.M. Abdallah and Rafat M. Mohareb

This work aims to synthesize a series of novel acyclic and/or heterocyclic systems, as precursors for dyes with potential antimicrobial activity that could be used for…

Abstract

Purpose

This work aims to synthesize a series of novel acyclic and/or heterocyclic systems, as precursors for dyes with potential antimicrobial activity that could be used for simultaneous dyeing and antimicrobial textile finishing. Thus, a series of novel pyridine, thiophene and pyrazolo[3,4-b]pyridine derivatives were synthesized, and their antimicrobial and textile finishing properties were studied and evaluated.

Design/methodology/approach

The synthesis, structure elucidation and antimicrobial activities of the newly synthesized compounds based on 4,4-dicyano-3-phenyl-but-3-enoic acid phenylamide (1) were demonstrated. The minimal inhibitory concentration in μg/mL of the compounds showed significant antimicrobial activity against most of the tested organisms. On the other hand, their spectral characteristics and fastness properties were measured and evaluated. Antimicrobial activities of the dyed fabrics in terms of inhibition zones (mm) were measured and evaluated.

Findings

A series of novel heterocyclic compounds (Schemes 1-3) were synthesized based on starting material (1). Compounds (1), 2, 4a, 8a and 9c exhibited comparable or even higher antibacterial activities than the selected standards (ampicillin), while compounds 2, 3c, 3d, 4a and 8b revealed higher antifungal activities than the selected standard (cycloheximide). On the other hand, some dyes showed high antimicrobial evaluation on the dyed fabrics (nylon 66, acetate and polyester) expressed as size (mm) of inhibition zones (Tables I-IV).

Practical implications

Results revealed that many hydrazo and azo derivatives were synthesized from some pyridines and thiophenes. The antimicrobial evaluation and textile finishing of the newly synthesized products revealed significant and potent values of antimicrobial activity.

Originality/value

All the synthesized compounds were novel and most of them exhibited higher antimicrobial activities than the selected standards antibiotics, thus are valuable for simultaneous dyeing and antimicrobial functional finishing of textile fabrics.

Details

Pigment & Resin Technology, vol. 48 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 6 April 2021

Gemeda Gebino, Gezu Ketema, Adina Fenta, Gideon Kipchirchir Rotich and Ayalew Debebe

The purpose of this study was to evaluate the extract of Moringa stenopetala seed oil, by organic solvents (methanol and hexane), for its efficacy against microbial activity on…

Abstract

Purpose

The purpose of this study was to evaluate the extract of Moringa stenopetala seed oil, by organic solvents (methanol and hexane), for its efficacy against microbial activity on cotton fabrics. The selected microbes for the study were two types of bacteria which are Gram-positive (S. aureus) and Gram-negative (E. coli).

Design/methodology/approach

Two types of bacteria, Gram-positive (S. aureus) and Gram-negative (E. coli) were used. The extract was applied on fabrics at a concentration of 5, 10 and 15 g/L using the pad-dry-cure method and antibacterial activities verified by the bacterial-growth reduction method. The treated fabrics were evaluated for antimicrobial activity against the bacteria before and after 15 washing cycles. The extract was examined for molecular structural change using fourier transform infrared spectroscopy (FTIR) and physical properties of the fabric; tensile strength, elongation, air permeability, stiffness and wettability were evaluated.

Findings

Results showed treated fabrics reduces the growth of Gram-positive (S. aureus) and Gram-negative (E. coli) bacteria from 77.6%–100% before wash and 45.8%–85.2% after wash for both extract concentrations. Comparing extracts, hexane extract reduces all bacteria growth than methanol extract for both extract concentrations while S. aureus was more susceptible to antimicrobial agents than E. coli at a lower concentration. As result, the tensile strength and air permeability were relatively lower than untreated ones without affecting the comfort properties of the fabric.

Originality/value

This study indicates that the Moringa stenopetala seed oil extract has a strong antimicrobial activity.

Details

Research Journal of Textile and Apparel, vol. 25 no. 3
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 339