Search results

1 – 10 of 544
Article
Publication date: 10 November 2023

Varun Sabu Sam, M.S. Adarsh, Garry Robson Lyngdoh, Garry Wegara K. Marak, N. Anand, Khalifa Al-Jabri and Diana Andrushia

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical…

Abstract

Purpose

The capability of steel columns to support their design loads is highly affected by the time of exposure and temperature magnitude, which causes deterioration of mechanical properties of steel under fire conditions. It is known that structural steel loses strength and stiffness as temperature increases, particularly above 400 °C. The duration of time in which steel is exposed to high temperatures also has an impact on how much strength it loses. The time-dependent response of steel is critical when estimating load carrying capacity of steel columns exposed to fire. Thus, investigating the structural response of cold-formed steel (CFS) columns is gaining more interest due to the nature of such structural elements.

Design/methodology/approach

In this study, experiments were conducted on two CFS configurations: back-to-back (B-B) channel and toe-to-toe (T-T) channel sections. All CFS column specimens were exposed to different temperatures following the standard fire curve and cooled by air or water. A total of 14 tests were conducted to evaluate the capacity of the CFS sections. The axial resistance and yield deformation were noted for both section types at elevated temperatures. The CFS column sections were modelled to simulate the section's behaviour under various temperature exposures using the general-purpose finite element (FE) program ABAQUS. The results from FE modelling agreed well with the experimental results. Ultimate load of experiment and finite element model (FEM) are compared with each other. The difference in percentage and ratio between both are presented.

Findings

The results showed that B-B configuration showed better performance for all the investigated parameters than T-T sections. A noticeable loss in the ultimate strength of 34.5 and 65.6% was observed at 90 min (986℃) for B-B specimens cooled using air and water, respectively. However, the reduction was 29.9 and 46% in the T-T configuration, respectively.

Originality/value

This research paper focusses on assessing the buckling strength of heated CFS sections to analyse the mode of failure of CFS sections with B-B and T-T design configurations under the effect of elevated temperature.

Details

Journal of Structural Fire Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 28 February 2024

Maryam Javed, Kashif Mehmood, Abdul Ghafoor and Asma Parveen

The board structure (BS) is pivotal in modern corporate governance (CG). This study aims to investigate BS variables (BSIZE, BIND and chief executive officer [CEO] duality) and…

Abstract

Purpose

The board structure (BS) is pivotal in modern corporate governance (CG). This study aims to investigate BS variables (BSIZE, BIND and chief executive officer [CEO] duality) and their correlation with risk-taking behavior indicators, enriching the understanding of how CG shapes financial institutions’ (FIs) decision-making in Pakistan.

Design/methodology/approach

By scrutinizing data from 67 financial entities listed on the Stock Exchange of Pakistan spanning from 2011 to 2022 through panel data regression techniques, the research emphasizes that BS holds a substantial influence over the risk tendencies exhibited by these firms.

Findings

Key findings suggest that board size has a positive influence, aligned with previous CG research. Smaller boards perform better and avoid excessive risk-taking, contrasting some negative relationship claims. More independent directors are recommended to curtail risk and financial disruption. Holding both CEO and chair roles reduces risk exposure, resonating with reputational and employment risk theory. It is essential to recognize that BS’s impact on risk-taking is nuanced and context-dependent.

Practical implications

Policymakers, scholars, practitioners and investors working in the market for financial companies might greatly benefit from the empirical findings of this study. Imposing mandates on FIs to uphold adequate capital reserves functions as a safeguard against unforeseen losses, thereby diminishing the probability of unwarranted risk-taking.

Originality/value

Prior studies in this domain predominantly focus on nonfinancial sectors. In addition, existing research often explores the relationship between BS and firm risk-taking solely within the banking sector, overlooking other FIs. This study contributes by using a comprehensive data set encompassing all types of FIs, thus extending the existing literature.

Details

Corporate Governance: The International Journal of Business in Society, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1472-0701

Keywords

Article
Publication date: 4 April 2024

Tassadit Hermime, Abdelghani Seghir and Smail Gabi

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several…

Abstract

Purpose

The purpose of this paper is the dynamic analysis and seismic damage assessment of steel sheet pile quay wall with inelastic behavior underground motions using several accelerograms.

Design/methodology/approach

Finite element analysis is conducted using the Plaxis 2D software to generate the numerical model of quay wall. The extension of berth 25 at the port of Bejaia, located in northeastern Algeria, represents a case study. Incremental dynamic analyses are carried out to examine variation of the main response parameters under seismic excitations with increasing Peak ground acceleration (PGA) levels. Two global damage indices based on the safety factor and bending moment are introduced to assess the relationship between PGA and the damage levels.

Findings

The results obtained indicate that the sheet pile quay wall can safely withstand seismic loads up to PGAs of 0.35 g and that above 0.45 g, care should be taken with the risk of reaching the ultimate moment capacity of the steel sheet pile. However, for PGAs greater than 0.5 g, it was clearly demonstrated that the excessive deformations with material are likely to occur in the soil layers and in the structural elements.

Originality/value

The main contribution of the present work is a new double seismic damage index for a steel sheet pile supported quay wharf. The numerical modeling is first validated in the static case. Then, the results obtained by performing several incremental dynamic analyses are exploited to evaluate the degradation of the soil safety factor and the seismic capacity of the pile sheet wall. Computed values of the proposed damage indices of the considered quay wharf are a practical helping tool for decision-making regarding the seismic safety of the structure.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 April 2024

Zhuofeng Li, Shide Mo, Kaiwen Yang and Yunmin Chen

The paper aims to clarify the distribution of excess pore pressure during cone penetration in two-layered clay and its influence on penetrometer resistance.

Abstract

Purpose

The paper aims to clarify the distribution of excess pore pressure during cone penetration in two-layered clay and its influence on penetrometer resistance.

Design/methodology/approach

An arbitrary Lagrangian–Eulerian scheme is adopted to preserve the quality of mesh throughout the numerical simulation. Simplified methods of layered penetration and coupled pore pressure analysis of cone penetration have been proposed and verified by previous studies. The investigation is then extended by the present work to study the cone penetration test in a two-layered clay profile assumed to be homogeneous with the modified Cam clay model.

Findings

The reduction of the range of pore pressure with decreasing PF will cause a decrease of the sensing distance. The PF of the underlying soil is one of the factors that determine the development distance. The interface can be obtained by taking the position of the maximum curvature of the penetrometer resistance curve in the case of stiff clay overlying soft clay. In the case of soft clay overlying stiff clay, the interface locates at the maximum curvature of the penetrometer resistance curve above about 1.6D.

Research limitations/implications

The cone penetration analyses in this paper are conducted assuming smooth soil-cone contact.

Originality/value

A simplified method based on ALE in Abaqus/Explicit is proposed for layered penetration, which solves the problem of mesh distortion at the interface between two materials. The stiffness equivalent method is also proposed to couple pore pressure during cone penetration, which achieves efficient coupling of pore water pressure in large deformations.

Details

Engineering Computations, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 April 2024

Fatimah De’nan, Chong Shek Wai, Tong Teong Yen, Zafira Nur Ezzati Mustafa and Nor Salwani Hashim

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was…

Abstract

Purpose

Brief introduction on the importance and the need for plastic analysis methods were presented in the beginning section of this review. The plastic method for analysis was considered to be the more advanced method of analysis because of its ability to represent the true behaviour of the steel structures. Then in the following section, a literature analysis has been carried out on the previous investigations done on steel plates, steel beams and steel frames by other authors. The behaviour of them under different types of loading were presented and are under the investigation of innovative new analysis methods.

Design/methodology/approach

Structure member connections also have the potential for plastic failure. In this study, the authors have highlighted a few topics to be discussed. The three topics in this study are T-end plate connections to a square hollow section, semi-rigid connections and cold-formed steel storage racks with spine bracings using speed-lock connections. Connection is one of the important parts of a structure that ensures the integrity of the structure. Finally, in this technical paper, the authors introduce some topics related to seismic action. Application of the Theory of Plastic Mechanism Control in seismic design is studied in the beginning. At the end, its in-depth application for moment resisting frames-eccentrically braced frames dual systems is investigated.

Findings

When this study involves the design of a plastic structure, the design criteria must involve the ultimate load rather than the yield stress. As the steel behaves in the plastic range, it means the capacity of the steel has reached the ultimate load. Ultimate load design and load factor design are the methods in the range of plastic analysis. After the steel capacity has reached beyond the yield stress, it fulfills the requirement in this method. The plastic analysis method offers a consistent and logical approach to structural analysis. It provides an economical solution in terms of steel weight, as the sections designed using this method are smaller compared with elastic design methods.

Originality/value

The plastic method is the primary approach used in the analysis and design of statically indeterminate frame structures.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 6 May 2024

Shan Gao, Bin Wang, Xinjie Yao and Quan Yuan

This paper aims to characterize the surface film formed on Alloys 800 and 690 in chloride and thiosulfate-containing solution at 300°C.

Abstract

Purpose

This paper aims to characterize the surface film formed on Alloys 800 and 690 in chloride and thiosulfate-containing solution at 300°C.

Design/methodology/approach

Alloy 800 and 690 were immersed in chloride and thiosulfate-containing solution at 300°C up to five days, and then the surface film was analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and energy dispersive X-ray spectrometers (EDX).

Findings

Through static immersion experiments in a high-temperature and high-pressure water environment, the alloy samples covered by surface film after five days of immersion were obtained. The morphology of the surface film was characterized at both horizontal and cross-sectional scales using SEM and focused ion beam-TEM techniques. It was observed that due to the influence of the quartz lining, the surface film primarily exhibited a bilayered structure. The first layer contained a significant amount of SiO2, with a higher content of metal hydroxides compared to metal oxides. The second layer was predominantly composed of Fe, Ni and Cr, with a higher content of metal oxides compared to metal hydroxides.

Originality/value

The results showed that the materials of the lining of the autoclave could significantly influence the film composition of the tested material, which should be paid attention when analyzing the corrosion mechanism at high temperature.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 March 2024

Emrehan Gürsoy, Hayati Kadir Pazarlioğlu, Mehmet Gürdal, Engin Gedik, Kamil Arslan and Abdullah Dağdeviren

The purpose of this study is to analyse the magnetic field effect on Fe3O4/H2O Ferrofluid flowing in a sudden expansion tube, which has specific behaviour in terms of rheology…

Abstract

Purpose

The purpose of this study is to analyse the magnetic field effect on Fe3O4/H2O Ferrofluid flowing in a sudden expansion tube, which has specific behaviour in terms of rheology, with convex dimple fins. Because the investigation of flow separation is a prominent application in performance, the effect of magnetic field and convex dimple on the thermo-hydraulic performance of sudden expansion tube are examined, in detail.

Design/methodology/approach

During the solution of the boundary conditions of the sudden expansion tube, finite volume method was used. Analyses have been conducted considering the single-phase solution, steady-state, incompressible fluid and no-slip condition of the wall under forced convection conditions. In the analyses, it has been assumed that the flow was developing thermally and has been fully developed hydrodynamically.

Findings

The present study focuses on exploring the influence of the magnetic field, nanofluid concentration and convex dimple fins on the thermo-hydraulic performance of sudden expansion tube. The results indicate that the strength of the magnetic field, nanofluid concentration and convex dimple fins have a positive effect on the convective heat transfer in the system.

Originality/value

The authors conducted numerical studies, determining through a literature search that no one had yet investigated enhancing heat transfer on a sudden expansion tube using combinations of magnetic fields, nanofluids and convex dimple fins. The results of the numerical analyses provide valuable information about the improvement of heat transfer and system performance in electronic device cooling and heat exchangers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2023

Hope Ameh and Jessica Lamond

The purpose of this paper is to explore flood-prone area residents' preferences of flood-resilient housing technologies (HTs), to understand the factors influencing their choices…

34

Abstract

Purpose

The purpose of this paper is to explore flood-prone area residents' preferences of flood-resilient housing technologies (HTs), to understand the factors influencing their choices. Flood-resilient HTs can reduce damage and disruption at a household level, particularly in areas where large-scale community schemes are not available or feasible. People’s perception of floods and their preferences of flood-resilient HTs are among many very important factors influencing the adoption of these technologies. Therefore, these perceptions and preferences must be well understood before implementation of these technologies can occur. However, studies on these two important factors are lacking in literature, particularly in the sub-Saharan African context.

Design/methodology/approach

Nigerian residents’ preferences of flood-resilient HTs were explored by focusing on five frequently flooded areas around the Niger and Benue river basins in Kogi State, Nigeria. Thirty-eight chat, video and voice call interviews were conducted with participants across five case study areas: Lokoja, Idah, Bassa, Ajaokuta and Koton Karifi. The interviews, informed through an illustrated brochure, covered residents’ experiences and perceptions of floods. This was done to gain an understanding of the factors influencing the choice of flood-resilient HTs adopted and those preferred.

Findings

This study confirms that residents in these five focus areas show similar characteristics to other floodplain residents as encapsulated in protection motivation theory. The flood-resilient HTs discussed in this study include flood-avoidance, flood-recoverability and flood-resistance strategies, as well as neighbourhood-scale approaches. Flood-resistance and flood-recoverability strategies rated highly in terms of suitability and envisaged efficiency in mitigating flooding in Kogi State. Although the measures were mostly agreed to be potentially effective and successful on a household scale, there were concerns as to flood mitigation on a neighbourhood scale.

Research limitations/implications

Pre-existing flood-resilient HTs were not extensively discussed in the literature review but were included to have a sense of the participants’ mitigation behaviour, as well as their potential to adopt (or not) new measures after adopting previous ones.

Originality/value

The results provide supporting evidence of the factors influencing the choice of and/or intention to adopt flood-resilient HTs, highlighted in literature. Results also contribute to literature by providing further insight into flood-resilient measures already adopted by residents, as well as their preferred HTs from the options presented. The implications of these findings and methodological considerations in this research are fully discussed in this paper.

Details

International Journal of Disaster Resilience in the Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1759-5908

Keywords

Article
Publication date: 25 April 2024

Hang Jia, Zhiming Gao, Shixiong Wu, Jia Liang Liu and Wenbin Hu

This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.

Abstract

Purpose

This study aims to investigate the corrosion inhibitor effect of migrating corrosion inhibitor (MCI) on Q235 steel in high alkaline environment under cathodic polarization.

Design/methodology/approach

This study investigated the electrochemical characteristics of Q235 steel with and without MCI by polarization curve and electrochemical impedance spectroscopy. Besides, the surface composition of Q235 steel under different environments was analyzed by X-ray photoelectron spectroscopy. In addition, the migration characteristic of MCI and the adsorption behavior of MCI under cathodic polarization were studied using Raman spectroscopy.

Findings

Diethanolamine (DEA) and N, N-dimethylethanolamine (DMEA) can inhibit the increase of Fe(II) in the oxide film of Q235 steel under cathodic polarization. The adsorption stability of DMEA film was higher under cathodic polarization potential, showing a higher corrosion inhibition ability. The corrosion inhibition mechanism of DEA and DMEA under cathodic polarization potential was proposed.

Originality/value

The MCI has a broad application prospect in the repair of damaged reinforced concrete due to its unique migratory characteristics. The interaction between MCIs, rebar and concrete with different compositions has been studied, but the passivation behavior of the steel interface in the presence of both the migrating electric field and corrosion inhibitors has been neglected. And it was investigated in this paper.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 December 2023

Nagat Zalhaf, Mariam Ghazy, Metwali Abdelatty and Mohamed Hamed Zakaria

Even though it is widely used, reinforced concrete (RC) is susceptible to damage from various environmental factors. The hazard of a fire attack is particularly severe because it…

Abstract

Purpose

Even though it is widely used, reinforced concrete (RC) is susceptible to damage from various environmental factors. The hazard of a fire attack is particularly severe because it may cause the whole structure to collapse. Furthermore, repairing and strengthening existing structures with high-performance concrete (HPC) has become essential from both technical and financial points of view. In particular, studying the postfire behavior of HPC with normal strength concrete substrate requires experimental and numerical investigations. Accordingly, this study aims to numerically investigate the post-fire behavior of reinforced composite RC slabs.

Design/methodology/approach

Consequently, in this study, a numerical analysis was carried out to ascertain the flexural behavior of simply supported RC slabs strengthened with HPC and exposed to a particularly high temperature of 600°C for 2 h. This behavior was investigated and analyzed in the presence of a number of parameters, such as HPC types (fiber-reinforced, 0.5% steel, polypropylene fibers [PPF], hybrid fibers), strengthening side (tension or compression), strengthening layer thickness, slab thickness, boundary conditions, reinforcement ratio and yield strength of reinforcement.

Findings

The results showed that traction-separation and full-bond models can achieve accuracy compared with experimental results. Also, the fiber type significantly affects the postfire performance of RC slab strengthened with HPC, where the inclusion of hybrid fiber recorded the highest ultimate load. While adding PPF to HPC showed a rapid decrease in the load-deflection curve after reaching the ultimate load.

Originality/value

The proposed model accurately predicted the thermomechanical behavior of RC slabs strengthened with HPC after being exposed to the fire regarding load-deflection response, crack pattern and failure mode. Moreover, the considered independent parametric variables significantly affect the composite slabs’ behavior.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 544