Search results

1 – 10 of 13
Book part
Publication date: 18 September 2024

M. Bina Celine Dorathy

Ocean transportation is not only the cheapest and the best mode of bulk transport but also the most polluting form of transportation. The International Maritime Organization (IMO…

Abstract

Ocean transportation is not only the cheapest and the best mode of bulk transport but also the most polluting form of transportation. The International Maritime Organization (IMO) has set strict targets to cut down carbon dioxide (CO2) emissions, following which several initiatives have been taken by the shipping industry to embrace new technologies that can make the industry greener. Significant investments have been made into research and development (R&D) to develop alternative marine fuels. This chapter explores the feasibility of setting up a Biomass Recycling Facility (BRF) in the Tirupur–Tuticorin region in Tamil Nadu. The region was chosen because Tirupur being a textile valley generates tonnes of textile wastes every year. It can become good feedstock for biofuel generation, and it is also near Tuticorin Port, which is one of the major ports in Tamil Nadu. On an average, every year 1,000 vessels of medium and large size call at this port. There is a high probability that a BRF established in the vicinity can generate and supply bioethanol for the ships calling at Tuticorin Port. It is apparent from the findings of the study that the feedstock generated by textile industry alone may not be sufficient to meet the huge volumes of biofuel requirements of vessels, more over considerable investments into infrastructure and technology are required. But the study points out that still it could become a viable option because of the government support and favourable Foreign Direct Investment (FDI) policies. The growing demand for biofuel and the increasing price in the world market can become an added advantage.

Details

The Emerald Handbook of Tourism Economics and Sustainable Development
Type: Book
ISBN: 978-1-83753-709-9

Keywords

Article
Publication date: 24 September 2024

Sagar H. Mane, Tushar S. Wagh, Gotan H. Jain and Madhavrao K. Deore

The study aims to develop an inexpensive metal oxide semiconductor gas sensor with high sensitivity, excellent selectivity for a specific gas and rapid response time.

Abstract

Purpose

The study aims to develop an inexpensive metal oxide semiconductor gas sensor with high sensitivity, excellent selectivity for a specific gas and rapid response time.

Design/methodology/approach

This study synthesized Zn2SnO4 nanostructures using a hydrothermal method with a 1 M concentration of zinc chloride (ZnCl2) as the zinc source and a 0.7 M concentration of tin chloride (SnCl4) as the tin source. Thick films of nanostructured Zn2SnO4 were then produced using screen printing. The structural properties of Zn2SnO4 were confirmed using X-ray diffraction, and the formation of Zn2SnO4 nanoparticles was verified by transmission electron microscopy. Scanning electron microscopy was used to analyse the surface morphology of the fabricated material, while energy dispersive spectroscopy provided insight into the chemical composition of the thick film. These fabricated thick films underwent testing for various hazardous gases, including nitrogen dioxide, ammonia, hydrogen sulphide (H2S), ethanol and methanol.

Findings

The nanostructured Zn2SnO4 thick film sensor demonstrates a notable sensitivity to H2S gas at a concentration of 500 ppm when operated at 160°C. Its selectivity, response time and recovery time were assessed and documented.

Research limitations/implications

The primary limitations of this research on metal oxide semiconductor gas sensors include poor selectivity to specific gases, limited durability and challenges in achieving detection at room temperature.

Practical implications

The nanostructured Zn2SnO4 thick film sensor demonstrates a strong response to H2S gas, making it a promising candidate for commercial production. The detection of H2S is crucial in various sectors, including industries and sewage plants, where monitoring this gas is essential.

Social implications

Currently, heightened global apprehension about atmospheric pollution stems from the existence of perilous toxic and flammable gases. This underscores the imperative need for monitoring such gases. Toxic and flammable gases are frequently encountered in both residential and industrial environments, posing substantial hazards to human health. Noteworthy accidents involving flammable gases have occurred in recent years. It is crucial to comprehend the presence and composition of these gases in the surroundings for precise detection, measurement and control. Thus, there has been a significant push for extensive research and development in diverse sensor technologies using various materials and methodologies to monitor and regulate these gases effectively.

Originality/value

In this research, Zn2SnO4 nanostructures were synthesized using a hydrothermal method with ZnCl2 at a concentration of 1 M for zinc and SnCl4 at a concentration of 0.7 M for tin. Thick films of nanostructured Zn2SnO4 were then fabricated via screen printing technique. Following fabrication, all thick films were subjected to testing with various toxic gases, and the results were compared to previously published data. The analysis indicated that the nanostructured Zn2SnO4 thick film sensor demonstrated outstanding performance concerning gas response, gas concentration, selectivity and response time, particularly towards H2S gas.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 16 August 2023

Taraprasad Mohapatra, Sudhansu Sekhar Mishra, Mukesh Bathre and Sudhansu Sekhar Sahoo

The study aims to determine the the optimal value of output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of…

Abstract

Purpose

The study aims to determine the the optimal value of output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of operation experimentally. The output parameters of a variable compression ratio (CR) diesel engine are investigated at different loads, CR and fuel modes of operation experimentally. The performance parameters like brake thermal efficiency (BTE) and brake specific energy consumption (BSEC), whereas CO emission, HC emission, CO2 emission, NOx emission, exhaust gas temperature (EGT) and opacity are the emission parameters measured during the test. Tests are conducted for 2, 6 and 10 kg of load, 16.5 and 17.5 of CR.

Design/methodology/approach

In this investigation, the first engine was fueled with 100% diesel and 100% Calophyllum inophyllum oil in single-fuel mode. Then Calophyllum inophyllum oil with producer gas was fed to the engine. Calophyllum inophyllum oil offers lower BTE, CO and HC emissions, opacity and higher EGT, BSEC, CO2 emission and NOx emissions compared to diesel fuel in both fuel modes of operation observed. The performance optimization using the Taguchi approach is carried out to determine the optimal input parameters for maximum performance and minimum emissions for the test engine. The optimized value of the input parameters is then fed into the prediction techniques, such as the artificial neural network (ANN).

Findings

From multiple response optimization, the minimum emissions of 0.58% of CO, 42% of HC, 191 ppm NOx and maximum BTE of 21.56% for 16.5 CR, 10 kg load and dual fuel mode of operation are determined. Based on generated errors, the ANN is also ranked for precision. The proposed ANN model provides better prediction with minimum experimental data sets. The values of the R2 correlation coefficient are 1, 0.95552, 0.94367 and 0.97789 for training, validation, testing and all, respectively. The said biodiesel may be used as a substitute for conventional diesel fuel.

Originality/value

The blend of Calophyllum inophyllum oil-producer gas is used to run the diesel engine. Performance and emission analysis has been carried out, compared, optimized and validated.

Details

World Journal of Engineering, vol. 21 no. 5
Type: Research Article
ISSN: 1708-5284

Keywords

Abstract

Details

Achieving the United Nations Sustainable Development Goals: Late or Too Late?
Type: Book
ISBN: 978-1-83549-407-3

Open Access
Article
Publication date: 20 August 2024

Miguel Araya-Calvo, Antti Järvenpää, Timo Rautio, Johan Enrique Morales-Sanchez and Teodolito Guillen-Girón

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder…

Abstract

Purpose

This study compares the fatigue performance and biocompatibility of as-built and chemically etched Ti-6Al-4V alloys in TPMS-gyroid and stochastic structures fabricated via Powder Bed Fusion Laser Beam (PBF-LB). This study aims to understand how complex lattice structures and post-manufacturing treatment, particularly chemical etching, affect the mechanical properties, surface morphology, fatigue resistance and biocompatibility of these metamaterials for biomedical applications.

Design/methodology/approach

Selective Laser Melting (SLM) technology was used to fabricate TPMS-gyroid and Voronoi stochastic designs with three different relative densities (0.2, 0.3 and 0.4) in Ti-6Al-4V ELI alloy. The as-built samples underwent a chemical etching process to enhance surface quality. Mechanical characterization included static compression and dynamic fatigue testing, complemented by scanning electron microscopy (SEM) for surface and failure analysis. The biocompatibility of the samples was assessed through in-vitro cell viability assays using the Alamar Blue assay and cell proliferation studies.

Findings

Chemical etching significantly improves the surface morphology, mechanical properties and fatigue resistance of both TPMS-gyroid and stochastic structures. Gyroid structures demonstrated superior mechanical performance and fatigue resistance compared to stochastic structures, with etching providing more pronounced benefits in these aspects. In-vitro biocompatibility tests showed high cytocompatibility for both as-built and etched samples, with etched samples exhibiting notably improved cell viability. The study also highlights the importance of design and post-processing in optimizing the performance of Ti64 components for biomedical applications.

Originality/value

The comparative analysis between as-built and etched conditions, alongside considering different lattice designs, provides valuable information for developing advanced biomedical implants. The demonstration of enhanced fatigue resistance and biocompatibility through etching adds significant value to the field of additive manufacturing, suggesting new avenues for designing and post-processing implantable devices.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Abstract

Purpose

The aim of this study was to evaluate the performance of fuel flow processes in a network of eight gas stations, located in the mesoregion of Alto Paranaíba and Triângulo Mineiro.

Design/methodology/approach

Two multi-criteria decision support methods were applied, respectively, of a statistical and mathematical nature, namely, Principal Component Analysis (PCA) and Data Envelopment Analysis (DEA). The research method used was quantitative, with a brief complement of qualitative research, and descriptive in purpose, supported by the inductive method. The data collection stage took place with the support of interviews, with the application of a structured questionnaire, and non-probabilistic sampling, for convenience.

Findings

It was possible to verify that the gas station that stood out the most was station 2 (GS2), which achieved maximum efficiency, a fact that can be justified by the analysis resulting from the application of PCA, as for the product purchase variable (PP), the GS2 is the one that buys the most fuel, and is also the one with the largest storage capacity (C), and the highest volume of product sales (PS), which suggests signs of balance between supply and demand for this station, justifying its prominence.

Research limitations/implications

The limitations of the study were related to the DEA technique, which requires a number of variables/indicators three times smaller than the number of DMUs considered, and the difficulty in obtaining financial data on the DMUs analyzed. Considering the security and anonymity of the gas station network, it was not possible to use this data.

Practical implications

The performance assessment of fuel flow processes carried out in this study promotes the efficient use of available resources as well as identifying efficient DMUs that represent benchmarks for improving management processes and performance of inefficient DMUs.

Social implications

From a social perspective, this study promotes the improvement of the quality of flow processes and effective management of the fuel supply chain, ensuring the safe storage and transportation of fuels to customer supply. Performance management in this sector moves other sectors of the economy, since an efficient unit represents a balance between supply and demand, and consequently, boosts the regional economy, promoting economic growth of the population. Hiring qualified labor for this purpose also represents one of the implications of the study. From an environmental perspective, optimizing flow processes generates a reduction in greenhouse gas emissions and encourages the formulation of public policies aimed at consolidating sustainable practices.

Originality/value

Performance management applied to the context of the fuel supply chain is a relevant topic that has been little explored in scientific research, with a low level of information detail. This study using the inductive method allows the generalization and replication of this management pattern in other organizations in the sector in order to increase the efficiency of the fuel distribution system, with the perspective of maximizing outputs and reducing input consumption. In this aspect, the study introduces possibilities for advancement in social and environmental perspectives based on the effective management of fuel logistics.

Details

Journal of Advances in Management Research, vol. 21 no. 4
Type: Research Article
ISSN: 0972-7981

Keywords

Open Access
Article
Publication date: 22 August 2024

Issam Krimi, Ziyad Bahou and Raid Al-Aomar

This work conducts a comprehensive analysis of how to incorporate resilience and sustainability into capacity expansion strategies for business-to-business (B2B) chemical supply…

Abstract

Purpose

This work conducts a comprehensive analysis of how to incorporate resilience and sustainability into capacity expansion strategies for business-to-business (B2B) chemical supply chains. This study aims to guide both researchers and managers on ensuring profitability in B2B chemical supply chains while minimizing environmental impacts, complying with regulations and mitigating disruptions and risks.

Design/methodology/approach

A systematic literature review is conducted to analyze the interplay between sustainability and resilience in chemical B2B supply chains, specify the quantitative and qualitative methods used to tackle this challenge and identify the drivers and barriers concerning capacity expansion. In addition, a comprehensive conceptual framework is suggested to outline a compelling research agenda.

Findings

The findings emphasize the increasing importance of modeling and resolving decision-making challenges related to sustainable and resilient supply chains, particularly in capital-intensive chemical industries. Yet, there is no standardized strategy for addressing these challenges. The predominant solution methods are heuristic and metaheuristic, and the selection of performance metrics tends to be empirical and tailored to specific cases. The main barriers to achieving sustainability and resilience arise from resource limitations within the supply chain. Conversely, the key drivers of performance focus on enhancing efficiency, competitiveness, cost effectiveness and risk management.

Practical implications

This work offers practitioners a conceptual framework that synthesizes the knowledge and tackles the challenges of designing sustainable and resilient supply chains as well as managing their operations in the context of B2B chemical supply chains. Results provide a practical guide for navigating the complex interplay of sustainability, resilience and chemical supply chain expansion.

Originality/value

The key concepts and dimensions associated with capacity expansion planning for a resilient and sustainable chemical supply chain are identified through structured and comprehensive analyses of existing literature. A conceptual framework is proposed for delineating the intersections among sustainability, resilience and chemical supply chain expansions. This mapping endeavor aims to facilitate a future characterized by the deployment of a nexus of resilience and sustainability in chemical supply chains. To this end, a promising future research agenda is accordingly outlined.

Details

Journal of Business & Industrial Marketing, vol. 39 no. 13
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 25 September 2024

Kumarasubramanian Ramar and Ganesan Subbiah

This study aims to examine the environmental effects of plastic waste on the atmosphere and its implications for disaster waste management. It focuses on using ammonia, pyrolyzed…

Abstract

Purpose

This study aims to examine the environmental effects of plastic waste on the atmosphere and its implications for disaster waste management. It focuses on using ammonia, pyrolyzed plastic oil and the effectiveness of alumina nanoparticles as a catalyst.

Design/methodology/approach

The research explores different combinations of conventional diesel and nano Al2O3 derived from pyrolyzed plastic oil (ranging from P10 to P40). Critical performance metrics evaluated include brake mean effective pressure (BMEP), brake specific fuel consumption, brake thermal efficiency and emissions of CO2, CO and NOx. The study specifically investigates the impact of adding 50 ppm of Al2O3 nanoparticles to these blends.

Findings

The findings indicate that using blended fuels with nanoadditives significantly lowers pollution. Specifically, the P30 blend with 50 ppm of Al2O3 nanoparticles greatly reduced CO emissions. Additionally, the same blend reduced NOx emissions and CO2 emissions. The P30 mix showed improved BMEP and brake thermal efficiency due to its density, calorific value and viscosity (6.3 bar). The P30 blend exhibited higher thermal efficiency due to decreased heat loss, whereas conventional diesel demonstrated the best mechanical efficiency due to its longer ignition delay.

Originality/value

This study highlights the potential of using Al2O3 nanoparticles and pyrolyzed plastic oil to reduce emissions and enhance the performance of internal combustion engines. It underscores the environmental benefits and implications for disaster waste management by converting plastic waste into useful resources and reducing air pollution.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Book part
Publication date: 4 October 2024

Dominic Duncan Mensah, Jeleel Opeyemi Agboola, Liv Torunn Mydland and Margareth Øverland

It is estimated that the largest share of future food fish will come from aquaculture production and that sustainable aquaculture is a precondition to realising this potential…

Abstract

It is estimated that the largest share of future food fish will come from aquaculture production and that sustainable aquaculture is a precondition to realising this potential. Sustainable aquaculture will also play a key role in achieving several of the targets set out in SDG14. It is now established that most of the aquafeed ingredients used today are not sustainable and cannot support the projected growth of the sector, hence the need for sustainable alternatives. Sustainable aquaculture is multidimensional, therefore, this chapter focuses on sustainable feed ingredient sourcing. The authors explored a group of highly promising emerging novel ingredients known as microbial ingredients (MIs), means of producing them and how they can help achieve sustainable aquaculture and SDG14 targets. Specifically, the chapter narrows down on producing MIs from Norwegian spruce tree hydrolysates using a biotechnological approach and how Foods of Norway, a centre for research-based innovation at the Norwegian University of Life Sciences is leading efforts to produce feed-worthy MIs from industrial and agricultural by-products through biotechnology-based valorisation. MIs such as yeast, fungi, and bacterial meal can support the growth of Atlantic salmon without compromising the health of the fish. Thus, MI has a net positive impact on climate and can help achieve some targets in SDG14 by reducing pressure on marine resources used as fish feed ingredients. Suggestions on how to address current bottlenecks in scaling up MIs have also been provided in the chapter.

Details

Higher Education and SDG14: Life Below Water
Type: Book
ISBN: 978-1-83549-250-5

Keywords

Open Access
Article
Publication date: 6 May 2024

Danusa Silva da Costa, Lucely Nogueira dos Santos, Nelson Rosa Ferreira, Katiuchia Pereira Takeuchi and Alessandra Santos Lopes

The aim was not to perform a systematic review but firstly to search in PubMed, Science Direct, Scopus and Web of Science databases on the papers published in the last five years…

Abstract

Purpose

The aim was not to perform a systematic review but firstly to search in PubMed, Science Direct, Scopus and Web of Science databases on the papers published in the last five years using tools for reviewing the statement of preferred information item for systematic reviews without focusing on a randomized analysis and secondly to perform a bibliometric analysis on the properties of films and coatings added of tocopherol for food packaging.

Design/methodology/approach

On January 24, 2022, information was sought on the properties of films and coatings added of tocopherol for use as food packaging published in PubMed, Science Direct, Scopus and Web of Science databases. Further analysis was performed using bibliometric indicators with the VOSviewer tool.

Findings

The searches returned 33 studies concerning the properties of films and coatings added of tocopherol for food packaging, which were analyzed together for a better understanding of the results. Data analysis using the VOSviewer tool allowed a better visualization and exploration of these words and the development of maps that showed the main links between the publications.

Originality/value

In the area of food science and technology, the development of polymers capable of promoting the extension of the shelf life of food products is sought, so the knowledge of the properties is vital for this research area since combining a biodegradable polymeric material with a natural antioxidant active is of great interest for modern society since they associate environmental preservation with food preservation.

Details

British Food Journal, vol. 126 no. 13
Type: Research Article
ISSN: 0007-070X

Keywords

1 – 10 of 13