Search results

1 – 10 of 131
Article
Publication date: 7 February 2024

Paul O. Ukachi, Mathias Ekpu, Sunday C. Ikpeseni and Samuel O. Sada

The purpose of this study is to assess the performance of fuel blends containing ethanol and gasoline in spark ignition engines. The aim is to explore alternative fuels that can…

Abstract

Purpose

The purpose of this study is to assess the performance of fuel blends containing ethanol and gasoline in spark ignition engines. The aim is to explore alternative fuels that can enhance performance while minimizing or eliminating adverse environmental impacts, particularly in the context of limited fossil fuel availability and the need for sustainable alternatives.

Design/methodology/approach

The authors used the Ricardo Wave software to evaluate the performance of fuel blends with varying ethanol content (represented as E0, E10, E25, E40, E55, E70, E85 and E100) in comparison to gasoline. The assessment involved different composition percentages and was conducted at various engine speeds (1,500, 3,000, 4,500 and 6,000 rpm). This methodology aims to provide a comprehensive understanding of how different ethanol-gasoline blends perform under different conditions.

Findings

The study found that, across all fuel blends, the highest brake power (BP) and the highest brake-specific fuel consumption (BSFC) were observed at 6,000 rpm. Additionally, it was noted that the presence of ethanol in gasoline fuel blends has the potential to increase both the BP and BSFC. These findings suggest that ethanol can positively impact the performance of spark-ignition engines, highlighting its potential as an alternative fuel.

Originality/value

This research contributes to the ongoing efforts in the automotive industry to find sustainable alternative fuels. The use of Ricardo Wave software for performance assessment and the comprehensive exploration of various ethanol-gasoline blends at different engine speeds add to the originality of the study. The emphasis on the potential of ethanol to enhance engine performance provides valuable insights for motor vehicle manufacturers and researchers working on alternative fuel solutions.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Open Access
Article
Publication date: 11 January 2024

Adewale Allen Sokan-Adeaga, Godson R.E.E. Ana, Abel Olajide Olorunnisola, Micheal Ayodeji Sokan-Adeaga, Hridoy Roy, Md Sumon Reza and Md. Shahinoor Islam

This study aims to assess the effect of water variation on bioethanol production from cassava peels (CP) using Saccharomyces cerevisiae yeast as the ethanologenic agent.

1275

Abstract

Purpose

This study aims to assess the effect of water variation on bioethanol production from cassava peels (CP) using Saccharomyces cerevisiae yeast as the ethanologenic agent.

Design/methodology/approach

The milled CP was divided into three treatment groups in a small-scale flask experiment where each 20 g CP was subjected to two-stage hydrolysis. Different amount of water was added to the fermentation process of CP. The fermented samples were collected every 24 h for various analyses.

Findings

The results of the fermentation revealed that the highest ethanol productivity and fermentation efficiency was obtained at 17.38 ± 0.30% and 0.139 ± 0.003 gL−1 h−1. The study affirmed that ethanol production was increased for the addition of water up to 35% for the CP hydrolysate process.

Practical implications

The finding of this study demonstrates that S. cerevisiae is the key player in industrial ethanol production among a variety of yeasts that produce ethanol through sugar fermentation. In order to design truly sustainable processes, it should be expanded to include a thorough analysis and the gradual scaling-up of this process to an industrial level.

Originality/value

This paper is an original research work dealing with bioethanol production from CP using S. cerevisiae microbe.

Highlights

  1. Hydrolysis of cassava peels using 13.1 M H2SO4 at 100 oC for 110 min gave high Glucose productivity

  2. Highest ethanol production was obtained at 72 h of fermentation using Saccharomyces cerevisiae

  3. Optimal bioethanol concentration and yield were obtained at a hydration level of 35% agitation

  4. Highest ethanol productivity and fermentation efficiency were 17.3%, 0.139 g.L−1.h−1

Hydrolysis of cassava peels using 13.1 M H2SO4 at 100 oC for 110 min gave high Glucose productivity

Highest ethanol production was obtained at 72 h of fermentation using Saccharomyces cerevisiae

Optimal bioethanol concentration and yield were obtained at a hydration level of 35% agitation

Highest ethanol productivity and fermentation efficiency were 17.3%, 0.139 g.L−1.h−1

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 20 February 2024

Shaimaa Hadi Al-Dulaimi and Miyada Kh Hassan

This study was design to investigate of P. aeruginosa, an example of Gram-negative bacteria, in seven primary and secondary schools of Baghdad city, and the effects of Ethanol and…

Abstract

Purpose

This study was design to investigate of P. aeruginosa, an example of Gram-negative bacteria, in seven primary and secondary schools of Baghdad city, and the effects of Ethanol and Dettol of P. aeruginosa biofilm.

Design/methodology/approach

Seventy swabs were collected from seven primary and secondary schools of Baghdad city, Iraq, during November -December 2022. Swabs were collected from classes desk, doors handles, students hands and water taps. Standard microbiological testing methods were used on the samples for isolation and identification. The ability of bacteria to form biofilm and the effects of Ethanol and Dettol on"preformed” biofilms was examined by microtiter plate with the use of an ELISA reader.

Findings

In 70 swabs from seven primary and secondary schools, growth was observed in 33 swabs as P. aeruginosa. Primary schools were higher contaminated than secondary and water taps and door handles represented the main source of this contamination. The ability of bacteria to produce biofilm was observed in 19 (57.6%) isolates and 14 (42.4%) nonbiofilm producers. As well as, Ethanol (70%) treatment of preformed biofilms led to enhance biofilm formation and revealed significantly greater staining after 4 and 24h than Dettol (3%) compared to an untreated control (tryptic soy broth (TSB) incubation).

Originality/value

Studies on P. aeruginosa in Iraqi schools are quite rare. This work is considered distinctive because it drew attention to the presence of pathogenic bacteria within primary and secondary schools, which are not considered their natural environment.

Details

Arab Gulf Journal of Scientific Research, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 13 December 2022

Chau Thi Ngoc Pham, Hung Ngoc Phan, Thao Thanh Hoang, Tien Thi Thuy Dao and Huong Mai Bui

The health and environmental hazards associated with synthetic dyes have led to a revival of natural dyes that are non-toxic, environmentally benign and coupled with various…

1403

Abstract

Purpose

The health and environmental hazards associated with synthetic dyes have led to a revival of natural dyes that are non-toxic, environmentally benign and coupled with various functions. The study aims to investigate and develop the potentiality of a popular herb called Chromolaena odorata (C. odorata) as a sustainable and stable dyestuff in textiles.

Design/methodology/approach

Natural colorant extracted from C. odorata leaves is used to dye the worsted fabric, which is one of the premier end-use of wool in fashion, via the padding method associated with pre-, simultaneous and post-mordanting with chitosan, tannic acid and copper sulfate pentahydrate. The effects of extraction, dyeing and mordanting processes on fabric’s color strength K/S and color difference ΔECMC are investigated via International Commission on Illumination’s L*a*b* color space, Fourier transform infrared spectroscopy, scanning electron microscope, color fastness to washing, rubbing, perspiration and light.

Findings

The results obtained indicate extraction with ethanol 90% with a solid/liquid ratio of 1:5 within 1 h, and coloration with a liquor ratio of 1:5 (pH 5) within 2 h under padding pressure of 0.3 MPa are the most effective for coloring worsted fabric.

Practical implications

The C. odorata’s application as a highly effective dyestuff possessing good colorimetric effectiveness has expanded this herb's economic potential, contributing partly to economic growth and adding value to wool in global supply chain.

Originality/value

C. odorata dyestuff has prevailed over other natural colorants because of its impressive color fastness against washing, rubbing, perspiration and especially color stability for pH change.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 29 August 2023

Hammama Irfan, Tahreem Beg, Farhana Naeem, Mohammad Irfan, Shenela Naqvi and Yang Shengyuan

The purpose of this study is to highlight the threats related to the utilization of synthetic fibers. Volatile organic compounds, particulates and acid gases are released during…

Abstract

Purpose

The purpose of this study is to highlight the threats related to the utilization of synthetic fibers. Volatile organic compounds, particulates and acid gases are released during the production of polyester and other synthetic textiles. Polyester is problematic solid waste material as it takes centuries to break down and hence causes microplastic pollution. Biodegradable synthetic solutions for the replacement of polyester are a sustainable business marketing these days. The naNia fiber is the breakthrough product and it is claimed a biodegradable, compostable and toxin-free polymer.

Design/methodology/approach

In this research, fabric constructed of naNia fiber was dyed with the extract of naturally occurring Lawsonia inermis (henna) plant leaves. The henna dye was extracted in water and ethanol using different methods, and the better extract was selected by the evaluation of ultraviolet-visible spectroscopy and phytochemical analysis. Henna with ethanol extract showed more desirable results hence it was selected to dye naNia fabric. To improve dyeability, premordanting, simultaneous mordanting and postmordanting were done using chitosan, fresh lemon extract and tannic acid, respectively. The dyed fabric samples were subjected to color strength analysis and multiple colorfastness tests.

Findings

The colorfastness test has shown good to excellent results. Scanning electron microscope analysis had also shown the attachment of dye molecules to the filaments. This study revealed that henna dye is appropriate to color naNia fiber even without the aid of a mordant.

Originality/value

For the first time, toxicant-free, biodegradable polyester (naNia) is successfully dyed with sustainable and naturally available dyes and mordants.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 30 May 2024

Adhemar Ronquim Filho, Luciana Oranges Cezarino and Geraldo Jose Ferraresi de Araujo

Bioelectricity from sugarcane presents possibilities of gaining prominence as an energy source in the coming years, contributing to sustainable development and being a relevant…

Abstract

Purpose

Bioelectricity from sugarcane presents possibilities of gaining prominence as an energy source in the coming years, contributing to sustainable development and being a relevant pillar of Brazil’s energy matrix, based on its advantages and the measures that can stimulate it. The purpose of this study is to contribute to a new framework for improving the regulatory framework for Brazilian sugarcane bioelectricity that facilitates the governance of its stakeholders and their respective relationships.

Design/methodology/approach

Exploratory and qualitative research, adopting, in addition to theoretical and practical research, consultations with experts, combined with analysis of documents relating to sustainability reports released by companies in the sector.

Findings

In the observed reports of 23 companies, it was found that 14 give full relevance to bagasse energy, and it can be attested that sugar-energy bioelectricity includes social, economic and environmental dimensions. In addition, the work presented elements that can benefit cogeneration, such as reduction or exemption of the distribution system use tariff for energy generation from bagasse; freedom for full commercialization in the free energy market, including small consumers; contractual simplification and solidification of financial compensation for clean energy production.

Originality/value

The work contributes to the advancement of theoretical references of business economics and competitiveness for practical application in competitive sustainability environments.

Details

International Journal of Energy Sector Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1750-6220

Keywords

Article
Publication date: 21 June 2024

Ramah Ahmed, Qile He and Jose Arturo Garza-Reyes

This paper explores the connection between agri-food supply chains (AFSCs) and levels of circular economy (CE): supply chain (SCs), firm, and product/materials. We aim to answer…

Abstract

Purpose

This paper explores the connection between agri-food supply chains (AFSCs) and levels of circular economy (CE): supply chain (SCs), firm, and product/materials. We aim to answer the following crucial research questions: (1) What are the specific characteristics of the AFSC that affect the implementation of CE? (2) How can the interplay of AFSC characteristics and CE levels be understood and utilised to close the current knowledge gap in CE implementation? (3) How do the CE levels established (in question 2) correspond to the notion of cascade chains? (4) Can the Triple-Bottom Line (TBL) principles be used to report CE impacts in the agri-food industry? (5) What future research directions need to be explored for sustainable CE configuration in AFSCs? Answering these questions expands the knowledge of the implementation of CE in AFSCs, which is crucial for sustainable configuration based on the TBL principles.

Design/methodology/approach

We conducted a comprehensive narrative overview (a type of narrative literature review) followed by a case study guided by the cascade chain theory. The sugar cane industry, a significant source of bioenergy that can contribute to sustainable development, was selected for the case study. To validate our findings from the narrative overview, we interviewed five directors from international sugar companies.

Findings

Our research has shown that CE can significantly benefit the sugar cane industry. Based on TBL principles, we have developed a framework to achieve sustainable configurations in AFSCs. The framework starts with regenerative agriculture, material reuse, and energy recovery, where different CE levels intersect. This intersection can guide firms to improve decision-making, promote sustainable practices, and inform policymaking across the sugar cane value chain.

Research limitations/implications

Narrative overview has limitations such as potential subjectivity and bias and may not be suitable for generalisation. To mitigate this limitation, we have included a case study to produce a rounded analysis. We have also gathered information from secondary sources, such as reports and company news articles, to prevent biased results.

Practical implications

This research provides valuable insights to assist companies in aligning their practices with CE levels, leading to sustainable outcomes in AFSCs. The study emphasises the importance of integrating CE levels and AFSC characteristics for policymakers to validate and develop new policies. Through our in-depth analysis of sugar cane SCs, we demonstrate that the various CE levels are interdependent and work in tandem with the unique characteristics of sugar cane, resulting in a sustainable configuration.

Originality/value

Analysing the connectedness between CE levels and AFSC characteristics is crucial to fully understanding the CE sustainable configuration. Unlike other frameworks that only describe the CE concept, the framework presented in this paper clearly explains the implementation of CE in AFSCs. It helps industrial practitioners and policymakers validate current practices and future policies. The paper also highlights future research directions and provides valuable insights.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 16 October 2023

Nonsikelelo Sheron Mpofu, Josphat Igadwa Mwasiagi, Cleophas Achisa Mecha and Eric Oyondi Nganyi

This study aims to investigate the potential use of potato peel extracts as antibacterial finishes for cotton fabrics against Staphylococcus aureus and Escherichia coli. Potato…

Abstract

Purpose

This study aims to investigate the potential use of potato peel extracts as antibacterial finishes for cotton fabrics against Staphylococcus aureus and Escherichia coli. Potato peels are abundant as waste and provide a natural, cheaper and sustainable alternative means of preventing the spread of bacterial infections on cotton fabric.

Design/methodology/approach

This research included the characterization of potato peel extracts, application of the extract onto cotton fabric and efficacy testing of the treated cotton fabric against bacteria. Phytochemical screening, agar well diffusion antibacterial test, minimum inhibitory concentration and Fourier transform infrared (FTIR) tests were used to characterize the extract. Antibacterial efficacy of the treated fabric was determined qualitatively using the disc diffusion assay and quantitatively using the bacteria reduction test.

Findings

Phytochemical screening confirmed the presence of several secondary metabolites including phenols and flavonoids. Antibacterial tests revealed a positive response in Escherichia coli and Staphylococcus aureus with a zone of inhibition of 6.50 mm and 5.60 mm, respectively. Additional peaks on the FTIR spectroscopy confirmed the presence of potato peel extract on the treated cotton fabric. The treated cotton fabrics showed efficacy against Staphylococcus aureus and Escherichia coli up to 20 washes.

Originality/value

This study introduced the application of potato peel extracts onto cotton fabrics and assessment of the antibacterial properties before and after washing. Results of this study suggest that potato peel extracts can be used as an organic eco-friendly antibacterial finish for cotton fabrics.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 23 August 2023

Pankaj Naharwal, Mahesh Meena, Charul Somani, Neetu Kumari and Dinesh Kumar Yadav

This paper aims to critically review the isolation and chemistry of plant pigments.

86

Abstract

Purpose

This paper aims to critically review the isolation and chemistry of plant pigments.

Design/methodology/approach

A literature survey from 1974 to 2022 was carried out and studied thoroughly. The authors reviewed literature in various areas such as isolation methods and catalytic properties of pigments.

Findings

With vast growing research in the field of catalytic activities of various pigments like chlorophyll, anthocyanin and flavonoids, there is still scope for further research for the pigments such as Lycopene, carotenoids and xanthophyll as there has not been any significant work in this area.

Research limitations/implications

Plant pigments may be used as an ecofriendly catalyst for chemical reactions.

Practical implications

One can get the direction of pigment research.

Social implications

Plant pigments are natural and ecofriendly catalyst which can reduce the pollution.

Originality/value

This is an original work. This paper precisely depicts the advantages as well as disadvantages of the isolation techniques of pigments. This study also presents the chemistry of plant pigments.

Graphical abstract

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 29 August 2024

Iman Ghaderi, Amir Hossein Behravesh, Seyyed Kaveh Hedayati, Seyed Alireza Alavinasab Ardebili, Omid Kordi, Ghaus Rizvi and Khodayar Gholivand

This study aims to design and implement a multimaterial system for printing multifunctional specimens suitable for various sectors, with a particular focus on biomedical…

Abstract

Purpose

This study aims to design and implement a multimaterial system for printing multifunctional specimens suitable for various sectors, with a particular focus on biomedical applications such as addressing mandibular bone loss.

Design/methodology/approach

To enhance both the mechanical and biological properties of scaffolds, an automatic multimaterial setup using vat photopolymerization was developed. This setup features a linear system with two resin vats and one ultrasonic cleaning tank, facilitating the integration of diverse materials and structures to optimize scaffold composition. Such versatility allows for the simultaneous achievement of various characteristics in scaffold design.

Findings

The printed multimaterial scaffolds, featuring 20 Wt.% hydroxylapatite (HA) on the interior and poly-L-lactic acid (PLLA) with 1 Wt.% graphene oxide (GO) on the exterior, exhibited favorable mechanical and biological properties at the optimum postcuring and heat-treatment time. Using an edited triply periodic minimal surface (TPMS) lattice structure further enhanced these properties. Various multimaterial specimens were successfully printed and evaluated, showcasing the capability of the setup to ensure functionality, cleanliness and adequate interface bonding. Additionally, a novel Gyroid TPMS scaffold with a nominal porosity of 50% was developed and experimentally validated.

Originality/value

This study demonstrates the successful fabrication of multimaterial components with minimal contaminations and suitable mechanical and biological properties. By combining PLLA-HA and PLLA-GO, this innovative technique holds significant promise for enhancing the effectiveness of regenerative procedures, particularly in the realm of dentistry.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 131