Search results

1 – 10 of over 57000
Article
Publication date: 16 November 2018

Mine Sertsöz, Mehmet Fidan and Mehmet Kurban

Improvements on the energy efficiency of the induction motors bear on not only these motors but also on the whole industry as a result of preference of these types of motors. In…

Abstract

Purpose

Improvements on the energy efficiency of the induction motors bear on not only these motors but also on the whole industry as a result of preference of these types of motors. In recent projects, energy efficiency of the induction motors is approaching to 90 per cent. The first necessary condition of the efficiency improvements is an accurate estimation of energy efficiency. This study aims to estimate the energy efficiency of induction motors by using three innovative estimation methods.

Design/methodology/approach

Data for 307 motors were taken from three different companies and their torque, power, power factor and speed data were used. Three hybrid models were created by estimating the error of three autoregressive (AR)-based efficiency estimation models with the back-propagation artificial neural network (ANN) structure. In these proposed hybrid models, the AR models were supported with artificial neural networks to obtain a minimum estimation error. These three hybrid models were called as AR1-ANN, AR4-ANN and residual-ANN.

Findings

Without hybridization of AR models by back-propagation ANNs, the best estimation result was obtained by residual model. On the other hand, for the proposed hybrid models, the best estimation was obtained by AR1-ANN, followed by AR4-ANN and finally the residual-ANN according to ME values.

Practical implications

Proposed AR-ANN hybrid models relieve of longtime experiments for the energy efficiency measurement of induction motors. Furthermore, these AR-ANN models give more accurate results than the available methods in the literature. Engineering value of this research is three different issues in finding energy efficiency. The first one is minimizing of the test cost, the second one is no requirement the test equipment and the third one is not interrupting the motor. Every company that needs motors can use these estimation methods due to the advantages.

Originality/value

Novel three AR-ANN hybrid models for energy efficiency estimation were studied. These novel methods give better response than the other methods which were used for estimation of induction motors in the literature.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 38 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 July 2015

Zeyu Ma, Jinglai Wu, Yunqing Zhang and Ming Jiang

The purpose of this paper is to provide a new computational method based on the polynomial chaos (PC) expansion to identify the uncertain parameters of load sensing proportional…

190

Abstract

Purpose

The purpose of this paper is to provide a new computational method based on the polynomial chaos (PC) expansion to identify the uncertain parameters of load sensing proportional valve (LSPV), which is commonly used to improve the efficiency of brake system in heavy truck.

Design/methodology/approach

For this investigation, the mathematic model of LSPV is constructed in the form of state space equation. Then the estimation process is implemented relying on the experimental measurements. With the coefficients of the PC expansion obtained by the numerical implementation, the output observation function can be transformed into a linear and time-invariant form. The uncertain parameter recursively update functions based on Newton method can therefore be derived fit for computer calculation. To improve the estimation accuracy and stability, the Newton method is modified by employing the acceptance probability to escape from the local minima during the estimation process.

Findings

The accuracy and effectiveness of the proposed parameter estimation method are confirmed by model validation compared with other estimation methods. Meanwhile, the influence of measurement noise on the robustness of the estimation methods is taken into consideration, and it is shown that the estimation approach developed in this paper could achieve impressive stability without compromising the convergence speed and accuracy too much.

Originality/value

The model of LSPV is originally developed in this paper, and then the authors propose a novel effective strategy for recursively estimating uncertain parameters of complicate pneumatic system based on the PC theory.

Details

Engineering Computations, vol. 32 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 October 2018

Zhiming Chen, Lei Li, Yunhua Wu, Bing Hua and Kang Niu

On-orbit service technology is one of the key technologies of space manipulation activities such as spacecraft life extension, fault spacecraft capture, on-orbit debris removal…

Abstract

Purpose

On-orbit service technology is one of the key technologies of space manipulation activities such as spacecraft life extension, fault spacecraft capture, on-orbit debris removal and so on. It is known that the failure satellites, space debris and enemy spacecrafts in space are almost all non-cooperative targets. Relatively accurate pose estimation is critical to spatial operations, but also a recognized technical difficulty because of the undefined prior information of non-cooperative targets. With the rapid development of laser radar, the application of laser scanning equipment is increasing in the measurement of non-cooperative targets. It is necessary to research a new pose estimation method for non-cooperative targets based on 3D point cloud. The paper aims to discuss these issues.

Design/methodology/approach

In this paper, a method based on the inherent characteristics of a spacecraft is proposed for estimating the pose (position and attitude) of the spatial non-cooperative target. First, we need to preprocess the obtained point cloud to reduce noise and improve the quality of data. Second, according to the features of the satellite, a recognition system used for non-cooperative measurement is designed. The components which are common in the configuration of satellite are chosen as the recognized object. Finally, based on the identified object, the ICP algorithm is used to calculate the pose between two frames of point cloud in different times to finish pose estimation.

Findings

The new method enhances the matching speed and improves the accuracy of pose estimation compared with traditional methods by reducing the number of matching points. The recognition of components on non-cooperative spacecraft directly contributes to the space docking, on-orbit capture and relative navigation.

Research limitations/implications

Limited to the measurement distance of the laser radar, this paper considers the pose estimation for non-cooperative spacecraft in the close range.

Practical implications

The pose estimation method for non-cooperative spacecraft in this paper is mainly applied to close proximity space operations such as final rendezvous phase of spacecraft or ultra-close approaching phase of target capture. The system can recognize components needed to be capture and provide the relative pose of non-cooperative spacecraft. The method in this paper is more robust compared with the traditional single component recognition method and overall matching method when scanning of laser radar is not complete or the components are blocked.

Originality/value

This paper introduces a new pose estimation method for non-cooperative spacecraft based on point cloud. The experimental results show that the proposed method can effectively identify the features of non-cooperative targets and track their position and attitude. The method is robust to the noise and greatly improves the speed of pose estimation while guarantee the accuracy.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 12 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 27 April 2020

Yongxiang Wu, Yili Fu and Shuguo Wang

This paper aims to design a deep neural network for object instance segmentation and six-dimensional (6D) pose estimation in cluttered scenes and apply the proposed method in…

467

Abstract

Purpose

This paper aims to design a deep neural network for object instance segmentation and six-dimensional (6D) pose estimation in cluttered scenes and apply the proposed method in real-world robotic autonomous grasping of household objects.

Design/methodology/approach

A novel deep learning method is proposed for instance segmentation and 6D pose estimation in cluttered scenes. An iterative pose refinement network is integrated with the main network to obtain more robust final pose estimation results for robotic applications. To train the network, a technique is presented to generate abundant annotated synthetic data consisting of RGB-D images and object masks in a fast manner without any hand-labeling. For robotic grasping, the offline grasp planning based on eigengrasp planner is performed and combined with the online object pose estimation.

Findings

The experiments on the standard pose benchmarking data sets showed that the method achieves better pose estimation and time efficiency performance than state-of-art methods with depth-based ICP refinement. The proposed method is also evaluated on a seven DOFs Kinova Jaco robot with an Intel Realsense RGB-D camera, the grasping results illustrated that the method is accurate and robust enough for real-world robotic applications.

Originality/value

A novel 6D pose estimation network based on the instance segmentation framework is proposed and a neural work-based iterative pose refinement module is integrated into the method. The proposed method exhibits satisfactory pose estimation and time efficiency for the robotic grasping.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Book part
Publication date: 16 December 2009

Zongwu Cai, Jingping Gu and Qi Li

There is a growing literature in nonparametric econometrics in the recent two decades. Given the space limitation, it is impossible to survey all the important recent developments…

Abstract

There is a growing literature in nonparametric econometrics in the recent two decades. Given the space limitation, it is impossible to survey all the important recent developments in nonparametric econometrics. Therefore, we choose to limit our focus on the following areas. In Section 2, we review the recent developments of nonparametric estimation and testing of regression functions with mixed discrete and continuous covariates. We discuss nonparametric estimation and testing of econometric models for nonstationary data in Section 3. Section 4 is devoted to surveying the literature of nonparametric instrumental variable (IV) models. We review nonparametric estimation of quantile regression models in Section 5. In Sections 2–5, we also point out some open research problems, which might be useful for graduate students to review the important research papers in this field and to search for their own research interests, particularly dissertation topics for doctoral students. Finally, in Section 6 we highlight some important research areas that are not covered in this paper due to space limitation. We plan to write a separate survey paper to discuss some of the omitted topics.

Details

Nonparametric Econometric Methods
Type: Book
ISBN: 978-1-84950-624-3

Article
Publication date: 29 March 2024

Bingbing Qi, Lijun Xu and Xiaogang Liu

The purpose of this paper is to exploit the multiple-Toeplitz matrices reconstruction method combined with quadratic spatial smoothing processing to improve the…

Abstract

Purpose

The purpose of this paper is to exploit the multiple-Toeplitz matrices reconstruction method combined with quadratic spatial smoothing processing to improve the direction-of-arrival (DOA) estimation performance of coherent signals at low signal-to-noise ratio (SNRs).

Design/methodology/approach

An improved multiple-Toeplitz matrices reconstruction method is proposed via quadratic spatial smoothing processing. Our proposed method takes advantage of the available information contained in the auto-covariance matrices of individual Toeplitz matrices and the cross-covariance matrices of different Toeplitz matrices, which results in a higher noise suppression ability.

Findings

Theoretical analysis and simulation results show that, compared with the existing Toeplitz matrix processing methods, the proposed method improves the DOA estimation performance in cases with a low SNR. Especially for the cases with a low SNR and small snapshot number as well as with closely spaced sources, the proposed method can achieve much better performance on estimation accuracy and resolution probability.

Research limitations/implications

The study investigates the possibility of reusing pre-existing designs for the DOA estimation of the coherent signals. The proposed technique enables achieve good estimation performance at low SNRs.

Practical implications

The paper includes implications for the DOA problem at low SNRs in communication systems.

Originality/value

The proposed method proved to be useful for the DOA estimation at low SNR.

Details

Engineering Computations, vol. 41 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 10 October 2016

Yui Kawasaki, Yui Kojima and Rie Akamatsu

Visual estimation, an easy-to-perform technique, is commonly used in hospitals to assess dietary intake in patients. The authors performed a qualitative study where the authors…

Abstract

Purpose

Visual estimation, an easy-to-perform technique, is commonly used in hospitals to assess dietary intake in patients. The authors performed a qualitative study where the authors interviewed nurses and dietitians about their perceptions of barriers to accurately measuring patients’ dietary intake in hospitals using the visual estimation method. The paper aims to discuss these issues.

Design/methodology/approach

Ten dietitians and ten clinical nurses responded to 30-minute individual interviews in Tokyo, Japan, in September 2014. Each interview was conducted using a common protocol of open-ended questions focusing on the challenges of the visual estimation method and barriers to accurately measuring patients’ dietary intake as part of their routine work. The tape-recorded interviews were transcribed and analyzed based on grounded theory.

Findings

Five main categories emerged: hospitals, meals, colleagues, raters, and patients. Various individual barriers such as skill, attitude, knowledge, and others that had not been considered in previous studies also emerged. External barriers that were out of the raters’ control, such as shortage of time, human resources, financial ability, and others, emerged from the “hospitals” category.

Research limitations/implications

Research participants were all females and many of them had less than ten years of experience.

Practical implications

In addition to standardizing the visual estimation process, medical staff need to overcome various other internal and external barriers to accurate measurements.

Originality/value

This is the first study to articulate some important barriers that influence reliability and validity when measuring patients’ dietary intake by visual estimation methods in typical clinical settings.

Details

International Journal of Health Care Quality Assurance, vol. 29 no. 8
Type: Research Article
ISSN: 0952-6862

Keywords

Article
Publication date: 1 March 1991

David Blake

The different types of estimators of rational expectations modelsare surveyed. A key feature is that the model′s solution has to be takeninto account when it is estimated. The two…

Abstract

The different types of estimators of rational expectations models are surveyed. A key feature is that the model′s solution has to be taken into account when it is estimated. The two ways of doing this, the substitution and errors‐in‐variables methods, give rise to different estimators. In the former case, a generalised least‐squares or maximum‐likelihood type estimator generally gives consistent and efficient estimates. In the latter case, a generalised instrumental variable (GIV) type estimator is needed. Because the substitution method involves more complicated restrictions and because it resolves the solution indeterminacy in a more arbitary fashion, when there are forward‐looking expectations, the errors‐in‐variables solution with the GIV estimator is the recommended combination.

Details

Journal of Economic Studies, vol. 18 no. 3
Type: Research Article
ISSN: 0144-3585

Keywords

Book part
Publication date: 6 January 2016

Catherine Doz and Anna Petronevich

Several official institutions (NBER, OECD, CEPR, and others) provide business cycle chronologies with lags ranging from three months to several years. In this paper, we propose a…

Abstract

Several official institutions (NBER, OECD, CEPR, and others) provide business cycle chronologies with lags ranging from three months to several years. In this paper, we propose a Markov-switching dynamic factor model that allows for a more timely estimation of turning points. We apply one-step and two-step estimation approaches to French data and compare their performance. One-step maximum likelihood estimation is confined to relatively small data sets, whereas two-step approach that uses principal components can accommodate much bigger information sets. We find that both methods give qualitatively similar results and agree with the OECD dating of recessions on a sample of monthly data covering the period 1993–2014. The two-step method is more precise in determining the beginnings and ends of recessions as given by the OECD. Both methods indicate additional downturns in the French economy that were too short to enter the OECD chronology.

Article
Publication date: 15 February 2022

Xiaojun Wu, Peng Li, Jinghui Zhou and Yunhui Liu

Scattered parts are laid randomly during the manufacturing process and have difficulty to recognize and manipulate. This study aims to complete the grasp of the scattered parts by…

Abstract

Purpose

Scattered parts are laid randomly during the manufacturing process and have difficulty to recognize and manipulate. This study aims to complete the grasp of the scattered parts by a manipulator with a camera and learning method.

Design/methodology/approach

In this paper, a cascaded convolutional neural network (CNN) method for robotic grasping based on monocular vision and small data set of scattered parts is proposed. This method can be divided into three steps: object detection, monocular depth estimation and keypoint estimation. In the first stage, an object detection network is improved to effectively locate the candidate parts. Then, it contains a neural network structure and corresponding training method to learn and reason high-resolution input images to obtain depth estimation. The keypoint estimation in the third step is expressed as a cumulative form of multi-scale prediction from a network to use an red green blue depth (RGBD) map that is acquired from the object detection and depth map estimation. Finally, a grasping strategy is studied to achieve successful and continuous grasping. In the experiments, different workpieces are used to validate the proposed method. The best grasping success rate is more than 80%.

Findings

By using the CNN-based method to extract the key points of the scattered parts and calculating the possibility of grasp, the successful rate is increased.

Practical implications

This method and robotic systems can be used in picking and placing of most industrial automatic manufacturing or assembly processes.

Originality/value

Unlike standard parts, scattered parts are randomly laid and have difficulty recognizing and grasping for the robot. This study uses a cascaded CNN network to extract the keypoints of the scattered parts, which are also labeled with the possibility of successful grasping. Experiments are conducted to demonstrate the grasping of those scattered parts.

Details

Industrial Robot: the international journal of robotics research and application, vol. 49 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 57000