Search results

1 – 5 of 5
Article
Publication date: 7 September 2019

Seyed Amin Bagherzadeh, Esmaeil Jalali, Mohammad Mohsen Sarafraz, Omid Ali Akbari, Arash Karimipour, Marjan Goodarzi and Quang-Vu Bach

Water/Al2O3 nanofluid with volume fractions of 0, 0.3 and 0.06 was investigated inside a rectangular microchannel. Jet injection of nanofluid was used to enhance the heat transfer…

Abstract

Purpose

Water/Al2O3 nanofluid with volume fractions of 0, 0.3 and 0.06 was investigated inside a rectangular microchannel. Jet injection of nanofluid was used to enhance the heat transfer under a homogeneous magnetic field with the strengths of Ha = 0, 20 and 40. Both slip velocity and no-slip boundary conditions were used.

Design/methodology/approach

The laminar flow was studied using Reynolds numbers of 1, 10 and 50. The results showed that in creep motion state, the constricted cross section caused by fluid jet is not observable and the rise of axial velocity level is only because of the presence of additional size of the microchannel. By increasing the strength of the magnetic field and because of the rise of the Lorentz force, the motion of fluid layers on each other becomes limited.

Findings

Because of the limitation of sudden changes of fluid in jet injection areas, the magnetic force compresses the fluid to the bottom wall, and this behavior limits the vertical velocity gradients. In the absence of a magnetic field and under the influence of the velocity boundary layer, the fluid motion has more variations. In creeping velocities of fluid, the presence or absence of the magnetic field does not have an essential effect on Nusselt number enhancement.

Originality/value

In lower velocities of fluid, the effect of the jet is not significant, and the thermal boundary layer affects the entire temperature field. In this case, for Hartmann numbers of 40 and 0, changing the Nusselt number on the heated wall is similar.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 22 November 2018

Esmaeil Jalali and Arash Karimipour

In this paper, the forced convection heat transfer of the nanofluid composed of water and AL2O3 nanoparticles is simulated in a two-dimensional horizontal microchannel by…

Abstract

Purpose

In this paper, the forced convection heat transfer of the nanofluid composed of water and AL2O3 nanoparticles is simulated in a two-dimensional horizontal microchannel by injecting the lower wall. The upper wall of the microchannel is 303 K at temperature TH. On the lower wall of the microchannel, there are three holes for flow injection. Other parts of the wall are insulated. In this paper, the effect of parameters such as Reynolds number, slip coefficient and volume fraction of nanoparticles is investigated.

Design/methodology/approach

The boundary condition of the slip velocity is considered on the upper and lower walls of the microchannel. In this work, the flow of nanofluid in the microchannel is considered to be slow, permanent and Newtonian. In the present study, the effect of injection through the microchannel wall on the slip velocity is examined for the first time.

Findings

The results are also presented as velocity profiles and Nusselt number diagrams. It was found that the Nusselt number increases with increasing the amount of slip coefficient of velocity and the weight percentage of solid nanoparticles. The rate of this increase is higher in the high values of the Reynolds number.

Originality/value

A novel paper concerned the simulation of cross-flow injection effects on the slip velocity and temperature domain of a nanofluid flow inside a microchannel.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 November 2018

Soheil Mohajerani, Duruo Huang, Gang Wang, Seyed-Mohammad Esmaeil Jalali and Seyed Rahman Torabi

This study aims to develop an efficient algorithm for generation of conforming mesh for seepage analysis through 3D discrete fracture networks (DFN).

138

Abstract

Purpose

This study aims to develop an efficient algorithm for generation of conforming mesh for seepage analysis through 3D discrete fracture networks (DFN).

Design/methodology/approach

The algorithm is developed based on a refined conforming Delaunay triangulation scheme, which is then validated using analytical solutions. The algorithm is well able to meet the challenge of meshing complex geometry of DFNs.

Findings

A series of sensitivity analysis have been performed to evaluate the effect of meshing parameters on steady state solution of Darcy flow using a finite element scheme. The results show that an optimized minimum internal angle of meshing elements should be predetermined to guarantee termination of the algorithm.

Originality/value

The developed algorithm is computationally efficient, fast and is of low cost. Furthermore, it never changes the geometrical structure and connectivity pattern of the DFN.

Details

Engineering Computations, vol. 35 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Book part
Publication date: 24 February 2023

Sarahit Castillo-Benancio, Aldo Alvarez-Risco, Flavio Morales-Ríos, Maria de las Mercedes Anderson-Seminario and Shyla Del-Aguila-Arcentales

In a pandemic framework (COVID-19), this chapter explores the impact of the global economy and socio-cultures concerning three axes: recreational, tourism, and hospitality…

Abstract

In a pandemic framework (COVID-19), this chapter explores the impact of the global economy and socio-cultures concerning three axes: recreational, tourism, and hospitality. Although we slowly see an economic revival, it is well known that this sector of study is very susceptible to being affected by the context of nations. Following restrictions and measures taken by governments around the world to reduce the number of cases of coronavirus infections, many nations closed their borders, affecting international travel and by 2020 tourism had been reduced to the near cessation of operations due to the imminent fear of this poorly studied disease, and the service sector was negatively affected. It should be added that, according to the World Tourism Organization's projections, a decrease of between 20 and 30% is forecast for 2020 compared to the previous year.

Details

Sustainable Management in COVID-19 Times
Type: Book
ISBN: 978-1-80382-597-7

Keywords

Abstract

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 1
Type: Research Article
ISSN: 2633-6596

1 – 5 of 5