Search results

1 – 8 of 8
Open Access
Article
Publication date: 14 May 2020

Ulrika Uotila, Arto Saari and Juha-Matti Junnonen

Public authorities are required to organise new facilities to respond to changed user demands in terms of a public-owned school. The number of pupils attending the case study…

1909

Abstract

Purpose

Public authorities are required to organise new facilities to respond to changed user demands in terms of a public-owned school. The number of pupils attending the case study school will increase in the following years, as will the number of children attending a day nursery located on the present campus. In addition, the users of the campus have complained of building-related symptoms. This study aims to understand the municipal decision-making process in organising the school’s facilities, in particular, the factors used for decreasing uncertainty around a project.

Design/methodology/approach

This study is a case study undertaken through an action research approach. The researchers participated in the project planning meetings concerning the future activities to take place in the building.

Findings

Over a 13-month period, multiple stakeholders participated in the project planning meetings providing a deeper understanding of the space demands posed, current challenges and opportunities offered by the existing building. In addition, the alternative solutions generated were evaluated. The problem identification and information gathering periods lasted over nine months, which was far longer than predicted. Thus, generating alternative solutions and evaluation of the solutions also delayed. As the entire process was delayed substantially, the final decision on organising the facilities was not made during this research.

Practical implications

This research may be of practical value for a property owner and a project team for decision-making concerning changed facility demands.

Originality/value

This paper provides information about how public authorities are making decisions on facility organisation during conditions of uncertainty.

Open Access
Article
Publication date: 25 November 2019

Ulrika Uotila, Arto Saari and Juha-Matti Junnonen

This study aims to present property management challenges that municipalities have encountered regarding a public building with noted building-related symptoms. The study goes on…

1246

Abstract

Purpose

This study aims to present property management challenges that municipalities have encountered regarding a public building with noted building-related symptoms. The study goes on to provide reasons for the failure of attempts to manage the symptoms and discusses the current challenges concerning the process.

Design/methodology/approach

A participatory case study was used as the research methodology to identify the current challenges concerning a municipal approach to managing the building-related symptoms in a case-study building. The researchers scrutinised the history of the health symptom management process and attended the project planning meetings focused on the investigation of the condition of the building.

Findings

Multiple challenges concerning maintenance and omitted or postponed repair actions, as well as vagueness in the management process were found. In addition to this, it was noted that the complexity of the initial design of the building and vandalism have resulted in challenges for the maintenance and moisture performance of the building structures. According to the study, more orderliness and a more systematic process is needed when managing a municipal property.

Practical implications

The identified property management challenges may be of practical value for the facility managers and the property owners, especially when managing the building-related symptoms and a damaged building.

Originality/value

This study highlights the importance of having an in-depth understanding of condition assessments as well as proper maintenance and timely repairs for the successful management of the building-related symptoms in a municipal building. This is a pilot project in a larger project of management of building refurbishment.

Details

Facilities , vol. 38 no. 5/6
Type: Research Article
ISSN: 0263-2772

Keywords

Open Access
Article
Publication date: 26 April 2024

Sultan Mohammed Althahban, Mostafa Nowier, Islam El-Sagheer, Amr Abd-Elhady, Hossam Sallam and Ramy Reda

This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the…

Abstract

Purpose

This paper comprehensively addresses the influence of chopped strand mat glass fiber-reinforced polymer (GFRP) patch configurations such as geometry, dimensions, position and the number of layers of patches, whether a single or double patch is used and how well debonding the area under the patch improves the strength of the cracked aluminum plates with different crack lengths.

Design/methodology/approach

Single-edge cracked aluminum specimens of 150 mm in length and 50 mm in width were tested using the tensile test. The cracked aluminum specimens were then repaired using GFRP patches with various configurations. A three-dimensional (3D) finite element method (FEM) was adopted to simulate the repaired cracked aluminum plates using composite patches to obtain the stress intensity factor (SIF). The numerical modeling and validation of ABAQUS software and the contour integral method for SIF calculations provide a valuable tool for further investigation and design optimization.

Findings

The width of the GFRP patches affected the efficiency of the rehabilitated cracked aluminum plate. Increasing patch width WP from 5 mm to 15 mm increases the peak load by 9.7 and 17.5%, respectively, if compared with the specimen without the patch. The efficiency of the GFRP patch in reducing the SIF increased as the number of layers increased, i.e. the maximum load was enhanced by 5%.

Originality/value

This study assessed repairing metallic structures using the chopped strand mat GFRP. Furthermore, it demonstrated the superiority of rectangular patches over semicircular ones, along with the benefit of using double patches for out-of-plane bending prevention and it emphasizes the detrimental effect of defects in the bonding area between the patch and the cracked component. This underlines the importance of proper surface preparation and bonding techniques for successful repair.

Graphical abstract

Details

Frontiers in Engineering and Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2634-2499

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 28 February 2023

Manuel Jesus, Ana Sofia Guimarães, Bárbara Rangel and Jorge Lino Alves

The paper seeks to bridge the already familiar benefits of 3D printing (3DP) to the rehabilitation of cultural heritage, still based on the use of complex and expensive…

1593

Abstract

Purpose

The paper seeks to bridge the already familiar benefits of 3D printing (3DP) to the rehabilitation of cultural heritage, still based on the use of complex and expensive handcrafted techniques and scarce materials.

Design/methodology/approach

A compilation of different information on frequent anomalies in cultural heritage buildings and commonly used materials is conducted; subsequently, some innovative techniques used in the construction sector (3DP and 3D scanning) are addressed, as well as some case studies related to the rehabilitation of cultural heritage building elements, leading to a reflection on the opportunities and challenges of this application within these types of buildings.

Findings

The compilation of information summarised in the paper provided a clear reflection on the great potential of 3DP for cultural heritage rehabilitation, requiring the development of new mixtures (lime mortars, for example) compatible with the existing surface and, eventually, incorporating some residues that may improve interesting properties; the design of different extruders, compatible with the new mixtures developed and the articulation of 3D printers with the available mapping tools (photogrammetry and laser scanning) to reproduce the component as accurately as possible.

Originality/value

This paper sets the path for a new application of 3DP in construction, namely in the field of cultural heritage rehabilitation, by identifying some key opportunities, challenges and for designing the process flow associated with the different technologies involved.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 3
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 16 June 2021

Zrinka Buhin Šturlić, Mirela Leskovac, Krunoslav Žižek and Sanja Lučić Blagojević

The purpose of this paper is to prepare stabile emulsions with 0–15% of colloidal silica and high monomer/water ratio and to investigate the influence of silica addition and…

1202

Abstract

Purpose

The purpose of this paper is to prepare stabile emulsions with 0–15% of colloidal silica and high monomer/water ratio and to investigate the influence of silica addition and surface modification on the polyacrylate properties.

Design/methodology/approach

Improving the properties of the composite can be achieved by optimizing the compatibility between the phases of the composite system with improving the interactions at the matrix/filler interface. Therefore, the silica surface was modified with nonionic emulsifier octylphenol ethoxylate, cationic initiator 2,2'-azobis-(amidinopropane dihydrochloride) and 3-methacryloxypropyltrimethoxysilane and polyacrylate/silica nanocomposites were prepared via in situ emulsion polymerization. Particle size distribution, rheological properties of the emulsions and morphology, thermal properties and mechanical properties of the film prepared from the emulsions were investigated.

Findings

Polyacrylate/silica systems with unmodified silica, silica modified with nonionic emulsifier and cationic initiator have micrometer, while pure PA matrix and systems with silica modified with silane have nanometer particle sizes. Addition and surface modification of the filler increased emulsion viscosity. Agglomeration of silica particles in composites was reduced with silica surface modification. Silica filler improves thermal stability and tensile strength of polyacrylate.

Originality/value

This paper provides broad spectrum of information depending on filler surface modification and latex preparation via in situ emulsion polymerization and properties with high amount of filler and monomer/water ratio with the aim that prepared latex is suitable for film formation and final application.

Details

Pigment & Resin Technology, vol. 51 no. 2
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 8 March 2022

Andrea Spaggiari and Filippo Favali

The purpose of this paper is to evaluate and exploit the combination of additive manufacturing polymeric technology and structural adhesives. The main advantage is to expand the…

Abstract

Purpose

The purpose of this paper is to evaluate and exploit the combination of additive manufacturing polymeric technology and structural adhesives. The main advantage is to expand the maximum dimension of the 3D printed parts, which is typically limited, by joining the parts with structural adhesive, without losing strength and stiffness and keeping the major asset of polymeric 3 D printing: freedom of shape of the system and low cost of parts.

Design/methodology/approach

The materials used in the paper are the following. The adhesive considered is a commercial inexpensive acrylic, quite similar to superglue, applicable with almost no surface preparation and fast curing, as time constraint is one of the key problems that affects industrial adhesive applications. The 3D printed parts were in acrylonitrile butadiene styrene (ABS), obtained with a Fortus 250mc FDM machine, from Stratasys. The work first compares flat overlap joint with joints designed to permit mechanical interlocking of the adherends and then to a monolithic component with the same geometry. Single lap, joggle lap and double lap joints are the configurations experimentally characterized following a design of experiment approach.

Findings

The results show a failure in the substrate, due to the low strength of the polymeric adherends for the first batch of typical bonded configurations, single lap, joggle lap and double lap. The central bonded area, with an increased global thickness, never does fail, and the adhesive is able to transfer the load both with and without mechanical interlocking. An additional set of scarf joints was also tested to promote adhesive failure as well as to retrieve the adhesive strength in this application. The results shows that bonding of polymeric AM parts is able to express its full potential compared with a monolithic solution even though the joint fails prematurely in the adherend due to the bending stresses and the notches present in the lap joints.

Research limitations/implications

Because of the 3D printed polymeric material adopted, the results may be generalized only when the elastic properties of the adherends and of the adhesive are similar, so it is not possible to extend the findings of the work to metallic additive manufactured components.

Practical implications

The paper shows that the adhesives are feasible way to expand the potentiality of 3 D printed equipment to obtain larger parts with equivalent mechanical properties. The paper also shows that the scarf joint, which fails in the adhesive first, can be used to extract information about the adhesive strength, useful for the designers which have to combine adhesive and additive manufactured polymeric parts.

Originality/value

To the best of the researchers’ knowledge, there are scarce quantitative information in technical literature about the performance of additive manufactured parts in combination with structural adhesives and this work provides an insight on this interesting subject. This manuscript provides a feasible way of using rapid prototyping techniques in combination with adhesive bonding to fully exploit the additive manufacturing capability and to create large and cost-effective 3 D printed parts.

Details

Rapid Prototyping Journal, vol. 28 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 23 January 2023

Md.Tanvir Ahmed, Hridi Juberi, A.B.M. Mainul Bari, Muhommad Azizur Rahman, Aquib Rahman, Md. Ashfaqur Arefin, Ilias Vlachos and Niaz Quader

This study aims to investigate the effect of vibration on ceramic tools under dry cutting conditions and find the optimum cutting condition for the hardened steel machining…

Abstract

Purpose

This study aims to investigate the effect of vibration on ceramic tools under dry cutting conditions and find the optimum cutting condition for the hardened steel machining process in a computer numerical control (CNC) lathe machine.

Design/methodology/approach

In this research, an integrated fuzzy TOPSIS-based Taguchi L9 optimization model has been applied for the multi-objective optimization (MOO) of the hard-turning responses. Additionally, the effect of vibration on the ceramic tool wear was investigated using Analysis of Variance (ANOVA) and Fast Fourier Transform (FFT).

Findings

The optimum cutting conditions for the multi-objective responses were obtained at 98 m/min cutting speed, 0.1 mm/rev feed rate and 0.2 mm depth of cut. According to the ANOVA of the input cutting parameters with respect to response variables, feed rate has the most significant impact (53.79%) on the control of response variables. From the vibration analysis, the feed rate, with a contribution of 34.74%, was shown to be the most significant process parameter influencing excessive vibration and consequent tool wear.

Research limitations/implications

The MOO of response parameters at the optimum cutting parameter settings can significantly improve productivity in the dry turning of hardened steel and control over the input process parameters during machining.

Originality/value

Most studies on optimizing responses in dry hard-turning performed in CNC lathe machines are based on single-objective optimization. Additionally, the effect of vibration on the ceramic tool during MOO of hard-turning has not been studied yet.

Details

International Journal of Industrial Engineering and Operations Management, vol. 5 no. 1
Type: Research Article
ISSN: 2690-6090

Keywords

1 – 8 of 8