Search results

1 – 10 of over 1000
Article
Publication date: 15 November 2021

Amit Kaushik, Mohammed Arif, Obas John Ebohon, Hord Arsalan, Muhammad Qasim Rana and Lovelin Obi

The Purpose of this paper is to identify statistical relationships between visual environment and occupant productivity. Visual environment is one of the most important indoor…

Abstract

Purpose

The Purpose of this paper is to identify statistical relationships between visual environment and occupant productivity. Visual environment is one of the most important indoor environmental quality (IEQ) parameters, and it directly impacts occupant productivity in offices. The literature outlines the significance of the impact. Still, there is a lack of investigation, statistical analysis and inter-relationships between the independent variables (IEQ factors), especially in the hot and arid climate.

Design/methodology/approach

This study presents a research study investigating the effects and shows statistical relationships between IEQ on occupant comfort and productivity. The study was conducted in the Middle East, and data was collected for 12 months. It used the response surface analysis to perform analysis.

Findings

This study outlined seven unique relationships highlighting the recommended range, inter-dependencies. Results include that illumination has maximum effect on visual comfort and temperature, daylight having direct influence and relative humidity, wall type next to the seat and kind of workspace also impact visual comfort and productivity. These findings would help to improve occupant comfort and productivity in office buildings. It is recommended to include results and recommendations on design guidelines for office buildings.

Originality/value

This study presents the unique effects of non-visual IEQ parameters on visual comfort and productivity. This investigation also provides a unique method to develop the statistical relationship between various indoor environmental factors and productivity in different contexts and buildings.

Details

Journal of Engineering, Design and Technology , vol. 21 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 22 March 2024

Saghar Hashemi, Amirhosein Ghaffarianhoseini, Ali Ghaffarianhoseini, Nicola Naismith and Elmira Jamei

Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct…

Abstract

Purpose

Given the distinct and unique climates in these countries, research conducted in other parts of the world may not be directly applicable. Therefore, it is crucial to conduct research tailored to the specific climatic conditions of Australia and New Zealand to ensure accuracy and relevance.

Design/methodology/approach

Given population growth, urban expansions and predicted climate change, researchers should provide a deeper understanding of microclimatic conditions and outdoor thermal comfort in Australia and New Zealand. The study’s objectives can be classified into three categories: (1) to analyze previous research works on urban microclimate and outdoor thermal comfort in Australia and New Zealand; (2) to highlight the gaps in urban microclimate studies and (3) to provide a summary of recommendations for the neglected but critical aspects of urban microclimate.

Findings

The findings of this study indicate that, despite the various climate challenges in these countries, there has been limited investigation. According to the selected papers, Melbourne has the highest number of microclimatic studies among various cities. It is a significant area for past researchers to examine people’s thermal perceptions in residential areas during the summer through field measurements and surveys. An obvious gap in previous research is investigating the impacts of various urban contexts on microclimatic conditions through software simulations over the course of a year and considering the predicted future climate changes in these countries.

Originality/value

This paper aims to review existing studies in these countries, provide a foundation for future research, identify research gaps and highlight areas requiring further investigation.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 14 May 2024

Junpeng Lyu, Michael Pitt and Tim Broyd

University students’ lecture theatre concentration levels are significantly related to indoor environmental quality (IEQ). The purpose of this study is to investigate the…

Abstract

Purpose

University students’ lecture theatre concentration levels are significantly related to indoor environmental quality (IEQ). The purpose of this study is to investigate the relationship between indoor environmental quality (IEQ) and the self-reported concentration levels of university students during the winter at University College London (UCL), UK.

Design/methodology/approach

A questionnaire survey and physical measurements were used to assess the IEQ factors affecting students’ concentration levels.

Findings

The lecture theatre design factor was the most significant factor influencing students’ concentration levels, and the facility environment was more important than the thermal environment, indoor air quality, and acoustic environment in influencing students’ concentration levels in this winter investigation at UCL, UK. Additionally, students prefer a colder thermal environment. The concentration level of students was positively correlated with the indoor air quality and negatively correlated with the acoustic environment.

Practical implications

Based on model application, this research could provide lecture theatre IEQ design. This research additionally provides an acceptable indoor thermal environment temperature range based on a large sample, which can be used to calibrate a student performance benchmark.

Originality/value

As this study evaluates the IEQ factors that influence the concentration levels of university students, interior designers and engineers should consider the rational layout of these factors. Therefore, this study may provide a reference for the interior environmental design of lecture theatres in educational buildings.

Details

Facilities , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 9 January 2024

Ebru Baykal Uluoz and Göksenin Inalhan

This paper aims to propose and provide an overview of a model analysis that considers the main spatial design attributes that influence and produce the most relevant salutogenic…

Abstract

Purpose

This paper aims to propose and provide an overview of a model analysis that considers the main spatial design attributes that influence and produce the most relevant salutogenic outcomes. These results are essential for a healthy work experience, especially in shared workspaces.

Design/methodology/approach

This study departs from the theoretical contributions of the salutogenic approach, principles from supportive design theory, psychosocial supportive design and the environmental demands and resources model. After a scoping literature review covering different fields of workspace design, environmental psychology and evidence-based design of health-care facilities, a conceptual analysis is done on a proposed understanding of work, health and environmental relations to overview spatial attributes that enhance specific salutogenic and well-being-promoting outcomes needed for a healthy work experience.

Findings

The model of analysis, as a theoretical element that helps create methodological tools, combined with the application of a post occupancy evaluation, is thought to assist architects, designers, workspace owners and stakeholders in their new designs or to evaluate existing ones.

Originality/value

Studies on defining spatial attributes and their intended salutogenic outcomes have been formally done in health-care facilities. However, applying this idea to shared workspaces is something new and is expected to contribute to their design and evaluation, especially if the notion of environmental demands and resources is complemented.

Article
Publication date: 27 January 2023

Davit Marikyan, Savvas Papagiannidis, Omer F. Rana and Rajiv Ranjan

The coronavirus disease 2019 (COVID-19) pandemic has had a big impact on organisations globally, leaving organisations with no choice but to adapt to the new reality of remote…

1322

Abstract

Purpose

The coronavirus disease 2019 (COVID-19) pandemic has had a big impact on organisations globally, leaving organisations with no choice but to adapt to the new reality of remote work to ensure business continuity. Such an unexpected reality created the conditions for testing new applications of smart home technology whilst working from home. Given the potential implications of such applications to improve the working environment, and a lack of research on that front, this paper pursued two objectives. First, the paper explored the impact of smart home applications by examining the factors that could contribute to perceived productivity and well-being whilst working from home. Second, the study investigated the role of productivity and well-being in motivating the intention of remote workers to use smart home technologies in a home-work environment in the future.

Design/methodology/approach

The study adopted a cross-sectional research design. For data collection, 528 smart home users working from home during the pandemic were recruited. Collected data were analysed using a structural equation modelling approach.

Findings

The results of the research confirmed that perceived productivity is dependent on service relevance, perceived usefulness, innovativeness, hedonic beliefs and control over environmental conditions. Perceived well-being correlates with task-technology fit, service relevance, perceived usefulness, perceived ease of use, attitude to smart homes, innovativeness, hedonic beliefs and control over environmental conditions. Intention to work from a smart home-office in the future is dependent on perceived well-being.

Originality/value

The findings of the research contribute to the organisational and smart home literature, by providing missing evidence about the implications of the application of smart home technologies for employees' perceived productivity and well-being. The paper considers the conditions that facilitate better outcomes during remote work and could potentially be used to improve the work environment in offices after the pandemic. Also, the findings inform smart home developers about the features of technology which could improve the developers' application in contexts beyond home settings.

Details

Internet Research, vol. 34 no. 2
Type: Research Article
ISSN: 1066-2243

Keywords

Article
Publication date: 26 January 2023

Afiqah R. Radzi, Nur Farhana Azmi, Syahrul Nizam Kamaruzzaman, Rahimi A. Rahman and Eleni Papadonikolaki

Digital twin (DT) and building information modeling (BIM) are interconnected in some ways. However, there has been some misconception about how DT differs from BIM. As a result…

Abstract

Purpose

Digital twin (DT) and building information modeling (BIM) are interconnected in some ways. However, there has been some misconception about how DT differs from BIM. As a result, industry professionals reject DT even in BIM-based construction projects due to reluctance to innovate. Furthermore, researchers have repeatedly developed tools and techniques with the same goals using DT and BIM to assist practitioners in construction projects. Therefore, this study aims to assist industry professionals and researchers in understanding the relationship between DT and BIM and synthesize existing works on DT and BIM.

Design/methodology/approach

A systematic review was conducted on published articles related to DT and BIM. A total record of 54 journal articles were identified and analyzed.

Findings

The analysis of the selected journal articles revealed four types of relationships between DT and BIM: BIM is a subset of DT, DT is a subset of BIM, BIM is DT, and no relationship between BIM and DT. The existing research on DT and BIM in construction projects targets improvements in five areas: planning, design, construction, operations and maintenance, and decommissioning. In addition, several areas have emerged, such as developing geo-referencing approaches for infrastructure projects, applying the proposed methodology to other construction geometries and creating 3D visualization using color schemes.

Originality/value

This study contributed to the existing body of knowledge by overviewing existing research related to DT and BIM in construction projects. Also, it reveals research gaps in the body of knowledge to point out directions for future research.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 16 April 2024

Fathima Sabrina Nazeer, Imriyas Kamardeen and Abid Hasan

Many buildings fail to meet user expectations, causing a performance gap. Pre-occupancy evaluation (PrOE) is believed to have the potential to close the gap. It enables designers…

Abstract

Purpose

Many buildings fail to meet user expectations, causing a performance gap. Pre-occupancy evaluation (PrOE) is believed to have the potential to close the gap. It enables designers to obtain end-user feedback in the design phase and improve the design for better performance. However, PrOE implementation faces challenges due to still maturing knowledgebase. This study aims to understand the state-of-the-art knowledge of PrOE, thereby identifying future research needs to advance the domain.

Design/methodology/approach

A systematic literature review following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) framework was conducted. A thorough search in five databases and Google Scholar retrieved 90 articles, with 30 selected for systematic review after eliminating duplicates and irrelevant articles. Bibliometric analyses were performed using VOSviewer and Biblioshiny on the article metadata, and thematic analyses were conducted on their contents.

Findings

PrOE is a vehicle for engaging building end-users in the design phase to address the credibility gap caused by the discrepancies between the expected and actual performance of buildings. PrOE has gained limited applications in healthcare, residential, office and educational building design for two broad purposes: design management and marketing. Using virtual reality technologies for PrOE has demonstrated significant benefits. Yet, the PrOE domain needs to mature in multiple perspectives to serve its intended purpose effectively.

Originality/value

This study identifies four knowledge gaps for future research to advance the PrOE domain: (1) developing a holistic PrOE framework, integrating comprehensive performance evaluation criteria, useable at different stages of the design phase and multi-criteria decision algorithms, (2) developing a mixed reality tool, embodying the holistic PrOE framework, (3) formulating a PrOE framework for adaptive reuse of buildings and (4) managing uncertainties in user requirements during the lifecycle in PrOE decisions.

Details

Built Environment Project and Asset Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-124X

Keywords

Article
Publication date: 10 January 2023

Isabelle Y.S. Chan and Hao Chen

Due to land resource scarcity, sustainable urban development in high-density cities has long been challenging. As such, many cities are formulating plans to “dig deep”, resulting…

Abstract

Purpose

Due to land resource scarcity, sustainable urban development in high-density cities has long been challenging. As such, many cities are formulating plans to “dig deep”, resulting in more citizens working and/or staying underground for longer periods of time. However, owing to the particularities of underground space, the factors involved in the creation of a healthy environment are different from those involved in aboveground developments. This study thus aims to investigate the influences of various underground environment factors on users' health through a holistic approach.

Design/methodology/approach

To achieve this aim, 12 underground sites and 12 corresponding aboveground sites are selected for a large-scale questionnaire survey, resulting in 651 survey samples. The survey covers post-occupancy evaluation of health (physical and psychosocial), underground environmental quality (visual, thermal, acoustic comfort, indoor air quality and ventilation), space design and greenery. Independent-sample T-test, Pearson correlation, multiple regression modelling and structural equation modelling are used to investigate whether significant differences exist between health of underground and aboveground users, and to develop an underground environment-health model for unveiling the significant associations between underground environment factors and users' health. To cross validate the results, an objective field measurement study is further conducted on six underground sites. The objective measurement results are used to cross validate the survey results.

Findings

The questionnaire results provide the following evidence: (1) health of underground users is significantly poorer than that of their aboveground counterparts; (2) underground development users' health is significantly affected by space design, greenery and environmental quality in terms of thermal comfort, indoor air quality, ventilation and acoustic comfort but not visual comfort; and (3) amongst the various identified factors, space design has the strongest predicting effects on human health. The field study echoes the survey findings and further unveils the relationships between different environmental factors and human health.

Originality/value

The results shed light on the importance of distinguishing between underground developments and aboveground ones in various guidelines and standards, especially those related to space management.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 5
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 25 January 2022

Vigneshkumar Chellappa and Vasundhara Srivastava

Science mapping is an essential application of visualization technology widely used in safety, construction management and environmental science. The purpose of this study was to…

256

Abstract

Purpose

Science mapping is an essential application of visualization technology widely used in safety, construction management and environmental science. The purpose of this study was to explore thermal comfort in residential buildings (TCinRB) research in India, identify research trends using a science mapping approach and provide a perspective for recommending future research in TCinRB.

Design/methodology/approach

This study used the VOSviewer tool to conduct a systematic analysis of the development trend in TCinRB studies in India based on Scopus Index articles published between 2001 and 2020. The annual numbers of articles, geographical locations of studies, major research organizations and authors, and the sources of journals on TCinRB were presented based on the analysis. Then, using co-authorship analysis, the collaborations among the major research groups were reported. Furthermore, research trends on TCinRB studies were visually explored using keyword co-occurrence analysis. The emerging research topics in the TCinRB research community were discovered by analyzing the authors’ keywords.

Findings

The findings revealed that studies had been discovered to pay more attention to north-east India, vernacular architecture, Hyderabad apartments and temperature performance in the past two decades. Thermal adaptation, composite climate, evaporative cooling and clothing insulation are emerging research areas in the TCinRB domain. The findings summarized mainstream research areas based on Indian climatic zones, addressed current TCinRB research gaps and suggested future research directions.

Originality/value

This review is particularly significant because it could help researchers understand the body of knowledge in TCinRB and opens the way for future research to fill an important research gap.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 5 April 2024

Fateme Akhlaghinezhad, Amir Tabadkani, Hadi Bagheri Sabzevar, Nastaran Seyed Shafavi and Arman Nikkhah Dehnavi

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to…

Abstract

Purpose

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to simulate occupant behavior has emerged as a potential solution. This study seeks to analyze the performance of free-running households by examining adaptive thermal comfort and CO2 concentration, both crucial variables in indoor air quality. The investigation of indoor environment dynamics caused by the occupants' behavior, especially after the COVID-19 pandemic, became increasingly important. Specifically, it investigates 13 distinct window and shading control strategies in courtyard houses to identify the factors that prompt occupants to interact with shading and windows and determine which control approach effectively minimizes the performance gap.

Design/methodology/approach

This paper compares commonly used deterministic and probabilistic control functions and their effects on occupant comfort and indoor air quality in four zones surrounding a courtyard. The zones are differentiated by windows facing the courtyard. The study utilizes the energy management system (EMS) functionality of EnergyPlus within an algorithmic interface called Ladybug Tools. By modifying geometrical dimensions, orientation, window-to-wall ratio (WWR) and window operable fraction, a total of 465 cases are analyzed to identify effective control scenarios. According to the literature, these factors were selected because of their potential significant impact on occupants’ thermal comfort and indoor air quality, in addition to the natural ventilation flow rate. Additionally, the Random Forest algorithm is employed to estimate the individual impact of each control scenario on indoor thermal comfort and air quality metrics, including operative temperature and CO2 concentration.

Findings

The findings of the study confirmed that both deterministic and probabilistic window control algorithms were effective in reducing thermal discomfort hours, with reductions of 56.7 and 41.1%, respectively. Deterministic shading controls resulted in a reduction of 18.5%. Implementing the window control strategies led to a significant decrease of 87.8% in indoor CO2 concentration. The sensitivity analysis revealed that outdoor temperature exhibited the strongest positive correlation with indoor operative temperature while showing a negative correlation with indoor CO2 concentration. Furthermore, zone orientation and length were identified as the most influential design variables in achieving the desired performance outcomes.

Research limitations/implications

It’s important to acknowledge the limitations of this study. Firstly, the potential impact of air circulation through the central zone was not considered. Secondly, the investigated control scenarios may have different impacts on air-conditioned buildings, especially when considering energy consumption. Thirdly, the study heavily relied on simulation tools and algorithms, which may limit its real-world applicability. The accuracy of the simulations depends on the quality of the input data and the assumptions made in the models. Fourthly, the case study is hypothetical in nature to be able to compare different control scenarios and their implications. Lastly, the comparative analysis was limited to a specific climate, which may restrict the generalizability of the findings in different climates.

Originality/value

Occupant behavior represents a significant source of uncertainty, particularly during the early stages of design. This study aims to offer a comparative analysis of various deterministic and probabilistic control scenarios that are based on occupant behavior. The study evaluates the effectiveness and validity of these proposed control scenarios, providing valuable insights for design decision-making.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

1 – 10 of over 1000