Search results

1 – 10 of 28
Open Access
Article
Publication date: 11 April 2024

Anna Prenestini, Stefano Calciolari and Arianna Rota

During the 1990s, Italian healthcare organisations (HOs) underwent a process of corporatisation, and the most innovative HOs introduced the balanced scorecard (BSC) to address the…

1004

Abstract

Purpose

During the 1990s, Italian healthcare organisations (HOs) underwent a process of corporatisation, and the most innovative HOs introduced the balanced scorecard (BSC) to address the need for broader accountability. Currently, there is a limited understanding of the dynamics and outcomes of such a process. Therefore, this study aims to explore whether the BSC is still considered an effective performance management tool and analyse the factors driving and hindering its evolution and endurance in public and non-profit HOs.

Design/methodology/approach

We conducted a retrospective longitudinal analysis of two pioneering cases in the adoption of the BSC: one in a public hospital and the other in a non-profit hospital. Data collection relied on accessing institutional documents and reports from the early 2000s to the present, as well as conducting semi-structured interviews with the internal sponsors of the BSC.

Findings

We found evidence of three main categories of factors that trigger or hinder the adoption and development of the BSC: (1) the role of the internal sponsor and professionals’ commitment; (2) information technology and the controller’s technological skills; and (3) the relationship between the management and professionalism logics during the implementation process. At the same time, there is no evidence to suggest that specific technical features of the BSC influence its endurance.

Originality/value

The paper contributes to the debate on the key factors for implementing and sustaining multidimensional control systems in professional organisations. It emphasises the importance of knowledge-based assets and distinctive internal capabilities for the success of the business. The implications of the BSC legacy are discussed, along with future developments of multidimensional control tools aimed at supporting strategy execution.

Details

Journal of Health Organization and Management, vol. 38 no. 9
Type: Research Article
ISSN: 1477-7266

Keywords

Abstract

Details

Reconceptualizing State of Exception: European Lessons from the Pandemic
Type: Book
ISBN: 978-1-83608-199-9

Article
Publication date: 16 September 2024

Nabila Abid, Junaid Aftab and Marco Savastano

Drawing an inference from institutional theory and dynamic capabilities view, this study empirically examined the impact of three institutional dimensions (regulative, normative…

Abstract

Purpose

Drawing an inference from institutional theory and dynamic capabilities view, this study empirically examined the impact of three institutional dimensions (regulative, normative and cognitive) and green entrepreneurial orientation (GEO) on a business firm’s performance. In addition, the moderating effect of dynamic capabilities on the relationship between GEO and firm performance was also explored.

Design/methodology/approach

The data were collected from 527 information technology (IT) firms in Pakistan using paper–pencil questionnaires, and the hypotheses were tested using structural equation modeling.

Findings

The findings showed that the regulative and normative institutional dimensions enhance GEO and firm performance in the selected developing country. However, the cognitive institutional dimension fails to report any substantial influence on GEO and firm performance. The findings raised concerns about lower individual accountability as well as the promotion of green practices and firm performance. In addition, dynamic capabilities positively moderate the GEO influence on firm performance.

Originality/value

With the interplay of institutional dimensions, GEO (as mediator) and dynamic capabilities (as moderator), this study developed and tested a unique framework to understand their influence on firm performance. Specifically, we extended the literature by giving evidence that among the three institutional dimensions, only regulative and normative are considered more important because of their direct and indirect (through GEO) positive effect on firm performance. In contrast, the cognitive institutional dimension failed to report any significant direct or indirect impact on firm performance in our study.

Book part
Publication date: 25 September 2024

Anita Zehrer, Lisa Marx and Gundula Glowka

Every organization must deal with new challenges such as automation, digitization, or structural transformation, which requires a highly resilient and engaged workforce to stay…

Abstract

Every organization must deal with new challenges such as automation, digitization, or structural transformation, which requires a highly resilient and engaged workforce to stay competitive. Strong leadership in a firm and specific abilities of the leader are necessary to manage uncertainties and to be able to react to certain changes. Various studies regarding organizations and resilience focus on large enterprises, while studies on small- and medium-sized enterprises (SMEs) are lacking. SMEs account for 99.6% of all companies in Austria and are largely run by entrepreneurial owners and their families. Based on transformational theory, the theory of resilience as well as positive psychology, we investigate five SME owners and their personal resilience in an exploratory study. The owners were selected by purposive sampling with the aim to develop a framework with recommended actions for the personal resilience of SME leaders.

Details

Innovation in Responsible Management Education
Type: Book
ISBN: 978-1-83549-465-3

Keywords

Book part
Publication date: 7 October 2024

Zhanbing Ren

In the past 10 years, the scale of running events in China has increased dramatically, and the forms of running events have also become rich and diverse. Running is not only a…

Abstract

In the past 10 years, the scale of running events in China has increased dramatically, and the forms of running events have also become rich and diverse. Running is not only a social phenomenon but also a historical and cultural phenomenon as an organic part of human culture with its own sociological values in China. This chapter offers insight into the development of Chinese running culture and how this has emerged from ancient and modern Chinese running cultures based on Foucault's disciplinary power theory, biopower and the technologies of the self. This chapter argues that running culture in China constructs the subjectivity of the Chinese runners under the joint action of the technologies of power and the technologies of the self. The findings acknowledge how Chinese Runners present and express themselves by showing a ‘sense of presence’. Runners illustrate the implicit or explicit meaning and value of a particular way of life through running. Runners regard running as the technology of the self for self-expression and self-creation so that individuals can control their bodies and soul, thoughts, behaviours and ways of existence. Emerging technologies of power provide possibilities for the production of running culture in China, and the current policy under the technologies of power meets the needs of runners. In Chinese running culture, power was not oppressive but productive.

Article
Publication date: 17 September 2024

Jiao Ge, Jiaqi Zhang, Daheng Chen and Tiesheng Dong

The purpose of this paper is to actively calibrate power density to match the application requirements with as small an actuator as possible. So, this paper introduces shape…

Abstract

Purpose

The purpose of this paper is to actively calibrate power density to match the application requirements with as small an actuator as possible. So, this paper introduces shape memory alloy to design variable stiffness elements. Meanwhile, the purpose of this paper is also to solve the problem of not being able to install sensors on shape memory alloy due to volume limitations.

Design/methodology/approach

This paper introduces the design, modeling and control process for a variable stiffness passive ankle exoskeleton, adjusting joint stiffness using shape memory alloy (SMA). This innovative exoskeleton aids the human ankle by adapting the precompression of elastic components by SMA, thereby adjusting the ankle exoskeleton’s integral stiffness. At the same time, this paper constructs a mathematical model of SMA to achieve a dynamic stiffness adjustment function.

Findings

Using SMA as the driving force for stiffness modification in passive exoskeletons introduces several distinct advantages, inclusive of high energy density, programmability, rapid response time and simplified structural design. In the course of experimental validation, this ankle exoskeleton, endowed with variable stiffness, proficiently executed actions like squatting and walking and it can effectively increase the joint stiffness by 0.2 Nm/Deg.

Originality/value

The contribution of this paper is to introduce SMA to adjust the stiffness to actively calibrate power density to match the application requirements. At the same time, this paper constructs a mathematical model of SMA to achieve a dynamic stiffness adjustment function.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 16 September 2024

Vittorio Di Vito, Bartosz Dziugiel, Sandra Melo, Jens T. Ten Thije, Gabriella Duca, Adam Liberacki, Henk Hesselink, Michele Giannuzzi, Aniello Menichino, Roberto Valentino Montaquila, Giovanni Cerasuolo and Adriana Witkowska-Konieczny

Urban air mobility (UAM) development and deployment into future cities is gaining increasing and relevant interest in the past years. This study, a conceptual paper, aims to…

Abstract

Purpose

Urban air mobility (UAM) development and deployment into future cities is gaining increasing and relevant interest in the past years. This study, a conceptual paper, aims to report the high-level description of the most relevant UAM application use cases (UCs) emerging from the research activities carried out in the ASSURED UAM project.

Design/methodology/approach

The UAM application UCs have been obtained from the ASSURED UAM project dedicated activities that have been carried out to, first, develop suitable operational concepts for UAM deployment in the next decades and, then, to further refine and design the most relevant UCs for UAM deployment in the next decades, leading to the public issue of dedicated overall document.

Findings

The ASSURED UAM UCs for UAM deployment in the next decades encompass both public (point-to-point, point-to-everywhere, direct medical transport of people) and private (direct last-mile delivery, advanced last-mile delivery, automatic personal aerial transportation) services applications, evolving in incremental way over time according to three considered time horizons (2025, 2030 and 2035), toward progressive integration into metropolitan transport system.

Originality/value

This paper provides final outline of the ASSURED UAM UCs, starting from the analysis of overall identified possible UAM applications, focusing on the description of the six main UCs considered as relevant for the application under the wider societal benefits point of view. The UCs are described in terms of expected operational environment, needed technological enablers and envisaged regulatory implications.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 20 September 2024

Wenqi Zhang, Zhenbao Liu, Xiao Wang and Luyao Wang

To ensure the stability of the flying wing layout unmanned aerial vehicle (UAV) during flight, this paper uses the radial basis function neural network model to analyse the…

Abstract

Purpose

To ensure the stability of the flying wing layout unmanned aerial vehicle (UAV) during flight, this paper uses the radial basis function neural network model to analyse the stability of the aforementioned aircraft.

Design/methodology/approach

This paper uses a linear sliding mode control algorithm to analyse the stability of the UAV's attitude in a level flight state. In addition, a wind-resistant control algorithm based on the estimation of wind disturbance with a radial basis function neural network is proposed. Through the modelling of the flying wing layout UAV, the stability characteristics of a sample UAV are analysed based on the simulation data. The stability characteristics of the sample UAV are analysed based on the simulation data.

Findings

The simulation results indicate that the UAV with a flying wing layout has a short fuselage, no tail with a horizontal stabilising surface and the aerodynamic focus of the fuselage and the centre of gravity is nearby, which is indicative of longitudinal static instability. In addition, the absence of a drogue tail and the reliance on ailerons and a swept-back angle for stability result in a lack of stability in the transverse direction, whereas the presence of stability in the transverse direction is observed.

Originality/value

The analysis of the stability characteristics of the sample aircraft provides the foundation for the subsequent establishment of the control model for the flying wing layout UAV.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 16 September 2024

Royal Madan, Pallavi Khobragade and Shubhankar Bhowmick

This study aimed to analyze the free vibration of a radially graded Ni-Al2O3-based functionally graded (FG) disk with uniform thickness.

Abstract

Purpose

This study aimed to analyze the free vibration of a radially graded Ni-Al2O3-based functionally graded (FG) disk with uniform thickness.

Design/methodology/approach

Using the energy method, natural frequencies of rotating and non-rotating disks were determined at the limit elastic angular speed. Material properties were estimated using a modified rule of mixture. Both even and uneven porosity variation effects were considered in the material modeling. Finite element analysis validated the analytical approach.

Findings

The study explored limit angular speeds and natural frequencies across various grading indices, investigating the impact of porosity types and grading indices on these parameters.

Practical implications

Insights from this research are valuable for researchers and design engineers involved in modeling and fabricating porous FG disks, aiding in more effective design and manufacturing processes.

Originality/value

This study contributes to the field by providing a comprehensive analysis of free vibration behavior in radially graded Ni-Al2O3-based FG disks. The incorporation of material modeling considering both even and uneven porosity variation adds originality to the research. Additionally, the validation through finite element analysis enhances the credibility of the findings.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 17 September 2024

Dukun Xu, Yimin Deng and Haibin Duan

This paper aims to develop a method for tuning the parameters of the active disturbance rejection controller (ADRC) for fixed-wing unmanned aerial vehicles (UAVs). The bald eagle…

Abstract

Purpose

This paper aims to develop a method for tuning the parameters of the active disturbance rejection controller (ADRC) for fixed-wing unmanned aerial vehicles (UAVs). The bald eagle search (BES) algorithm has been improved, and a cost function has been designed to enhance the optimization efficiency of ADRC parameters.

Design/methodology/approach

A six-degree-of-freedom nonlinear model for a fixed-wing UAV has been developed, and its attitude controller has been formulated using the active disturbance rejection control method. The parameters of the disturbance rejection controller have been fine-tuned using the collaborative mutual promotion bald eagle search (CMP-BES) algorithm. The pitch and roll controllers for the UAV have been individually optimized to obtain the most effective controller parameters.

Findings

Inspired by the salp swarm algorithm (SSA), the interaction among individual eagles has been incorporated into the CMP-BES algorithm, thereby enhancing the algorithm's exploration capability. The efficient and accurate optimization ability of the proposed algorithm has been demonstrated through comparative experiments with genetic algorithm, particle swarm optimization, Harris hawks optimization HHO, BES and modified bald eagle search algorithms. The algorithm's capability to solve complex optimization problems has been further proven by testing on the CEC2017 test function suite. A transitional function for fitness calculation has been introduced to accelerate the ability of the algorithm to find the optimal parameters for the ADRC controller. The tuned ADRC controller has been compared with the classical proportional-integral-derivative (PID) controller, with gust disturbances introduced to the UAV body axis. The results have shown that the tuned ADRC controller has faster response times and stronger disturbance rejection capabilities than the PID controller.

Practical implications

The proposed CMP-BES algorithm, combined with a fitness function composed of transition functions, can be used to optimize the ADRC controller parameters for fixed-wing UAVs more quickly and effectively. The tuned ADRC controller has exhibited excellent robustness and disturbance rejection capabilities.

Originality/value

The CMP-BES algorithm and transitional function have been proposed for the parameter optimization of the active disturbance rejection controller for fixed-wing UAVs.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

1 – 10 of 28