Search results

1 – 10 of over 1000
Article
Publication date: 13 April 2015

Ji Bin Hu, Chao Wei and XueYuan Li

– The purpose of this paper is to investigate the friction and sealing characteristics of narrow end face seal ring with spiral grooves for wet clutch by experiment.

Abstract

Purpose

The purpose of this paper is to investigate the friction and sealing characteristics of narrow end face seal ring with spiral grooves for wet clutch by experiment.

Design/methodology/approach

The shallow spiral grooves are machined in the end face of narrow seal ring by laser, and all of other parameters of specimens are the same with the actual production. The investigation of friction and sealing characteristics are carried out by comparing the experiment results of end face seal ring with spiral grooves with the conventional seal ring without spiral grooves through friction coefficient test, volume leakage rate test and pv value test.

Findings

Comparing with conventional seal ring without spiral grooves, seal ring with spiral grooves experiences boundary lubrication, mixed lubrication and fluid film lubrication with the increase of rotation speed, whereas the conventional seal ring only experiences mixed lubrication. Besides this, the volume leakage rate is slightly larger, but the pv value is much larger than that of conventional seal ring.

Originality/value

Effect of spiral grooves on the friction and sealing characteristics of narrow end face seal ring for wet clutch is investigated. The improved lubrication performance can be achieved by shallow spiral grooves even if the distance of radius difference used to machine grooves is very small.

Details

Industrial Lubrication and Tribology, vol. 67 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 April 2024

Delin Chen

This study aims to research the influence mechanism of microtextured geometric parameters of dry gas seal end face on the tribological behavior under dry frictional conditions.

Abstract

Purpose

This study aims to research the influence mechanism of microtextured geometric parameters of dry gas seal end face on the tribological behavior under dry frictional conditions.

Design/methodology/approach

The microtexture was processed using laser processing, while the diamond-like carbon (DLC) film was applied through magnetron sputtering; the experimental platform of friction vibration was established, the frictional and vibrational properties of different geometric parameters were tested; the data signals of vibrational acceleration and frictional torque were collected and processed using data acquisition instrument. The entropy characteristic parameters of 3D vibrational acceleration were extracted based on wavelet packet decomposition method. The end-face topography was measured with ST400 three-dimensional noncontact surface topography instrument.

Findings

The geometry of pits plays a key role in influencing friction performance; the permutation entropy and fuzzy entropy of the vibration acceleration signal changed with variations in microtextured parameters. A textured surface with appropriately size parameters can trap debris, enhance the dynamic pressure effect, reduce impact between the friction interfaces and improve the frictional vibrational performance. In this research, microtextured surface with Φ150 µm-10% and Φ200 µm-5% can effectively reduce friction and vibration between the end faces of a dry gas seal.

Originality/value

DLC film improves the hardness of seal ring end face, and microtexture improves the dynamic effect; the tribological behavior monitoring can be realized by analyzing the characteristics of vibration acceleration sensitive parameter with friction state. The findings will provide a basis for further research in the field of tribology and the microtexture optimization of dry gas seal ring end face.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-12-2023-0389/

Details

Industrial Lubrication and Tribology, vol. 76 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 June 2024

Delin Chen, Yan Chen and Jinxin Chen

This paper aims to analyze the characteristics of friction vibration signals and identify the vibration excitation source at the start and stop stage of microtextured end face of…

31

Abstract

Purpose

This paper aims to analyze the characteristics of friction vibration signals and identify the vibration excitation source at the start and stop stage of microtextured end face of dry gas seals.

Design/methodology/approach

The friction pair consists of a diamond-like carbon (DLC) film microtextured seal ring and a spiral groove seal ring. Friction vibration signal feature extraction method based on harmonic wavelet packet and spectrum analysis was proposed. Signals were collected using acceleration sensor, acquisition card and LabVIEW software. Vibration acceleration signal was decomposed into 32 frequency bands using MATLAB wavelet packet transformation. The 32nd band coefficient was extracted for reconstruction, time-domain and spectral waveforms were obtained and spectra before/after denoising were compared.

Findings

The end face of the DLC film microtextured seal ring generates a good dynamic pressure effect, and the friction and vibration reduction effects are obvious. The harmonic wavelet packet can decompose the vibration signal conveniently and precisely. In the case of this experiment, the frequency of vibration of the seal ring is 7500 HZ.

Originality/value

The results show that the method is effective for the processing of friction vibration signal and the identification of vibration excitation source. The findings will provide ideas for the frictional vibration signal processing and basis for further research in the field of tribology of dry gas seal ring.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-03-2024-0084/

Details

Industrial Lubrication and Tribology, vol. 76 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 10 August 2021

Bo Yu, Muming Hao, Sun Xinhui, Zengli Wang, Liu Fuyu and Li Yongfan

The purpose of this paper is to investigate the dynamic characteristics of spiral groove liquid film seal under the effect of thermal–fluid–solid coupling.

Abstract

Purpose

The purpose of this paper is to investigate the dynamic characteristics of spiral groove liquid film seal under the effect of thermal–fluid–solid coupling.

Design/methodology/approach

The dynamic analysis model of spiral groove liquid film seal under the effect of thermal–fluid–solid coupling was established by perturbation method. The steady-state and perturbation Reynolds equations were solved, and the steady-state sealing performance and dynamic characteristic coefficients of the liquid film were obtained.

Findings

Compared with the liquid film without coupling method, a divergent seal gap is formed between the seal rings under the effect of thermal–fluid–solid coupling, the minimum liquid film thickness decreases, the dynamic stiffness and damping coefficients of the liquid film are increased and the thermoelastic deformation of the end-face improves the dynamic performance of the liquid film seal.

Originality/value

The dynamic characteristics of the spiral groove liquid film seal under the effect of thermal–fluid–solid coupling are studied, which provides a theoretical reference for optimizing the dynamic performance of the non-contacting liquid film seal.

Details

Industrial Lubrication and Tribology, vol. 73 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 12 May 2022

Cheng Zhang, Jianfeng Zhou and Xiannian Meng

In the magnetorheological fluid (MRF) sealing, a large amount of friction heat is generated in the fluid film with micron thickness due to the viscosity dissipation, which leads…

Abstract

Purpose

In the magnetorheological fluid (MRF) sealing, a large amount of friction heat is generated in the fluid film with micron thickness due to the viscosity dissipation, which leads to seal failure and MRF deterioration. The purpose of this study is to investigate the mechanism of temperature rise of MRF film under the action of the three-field coupling of the flow field, temperature field and magnetic field.

Design/methodology/approach

The fluid film was simplified as a Couette flow in this work to simulate the temperature change in the sealing fluid film under different working conditions. The corresponding experiment for test the temperature rise was also carried out, and the temperature of the characteristic point of the stationary ring was measured to validate the model.

Findings

The results show that the temperature rise is mainly affected by the rotational speed, magnetic field strength and fluid film thickness. The magnetic field enhances the convective heat transfer in the MRF film. The thinner the fluid film, the more frictional heat generated. The MRF film reaches its maximum temperature at the contact with the end face of rotating ring due to frictional heat.

Originality/value

A method for temperature rise analysis of MRF fluid sealing films based on Couette flow is established. It is helpful for the study of liquid film frictional heat in MRF seals.

Details

Industrial Lubrication and Tribology, vol. 74 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 October 2018

Penggao Zhang, Boqin Gu, Jianfeng Zhou and Long Wei

The purpose of this study is to investigate the hydrodynamic lubrication characteristics of ferrofluid film for spiral groove mechanical seal in external electromagnetic field and…

Abstract

Purpose

The purpose of this study is to investigate the hydrodynamic lubrication characteristics of ferrofluid film for spiral groove mechanical seal in external electromagnetic field and to analyze the effects of the volume fraction of ferrofluid, parameters of the electromagnetic field, operating parameters and geometrical parameters of mechanical seal on the characteristics of ferrofluid film.

Design/methodology/approach

The relationship between the ferrofluid viscosity and the intensity of external electromagnetic field was established. Based on the Muijderman narrow groove theory, the pressure distribution was calculated with the trial method by trapezoid formula.

Findings

It was found that pressure, average viscosity, average density and opening force of ferrofluid between end faces increase with the increase in intensity of current, volume fraction of ferrofluid, rotating speed, pressure differential and spiral angle; decrease with the increase in temperature; and increase at first and then decrease with the increase in the ratio of groove width to weir and the groove length. All of them reach the maximum value when the ratio of width of groove to weir is 0.7 and the ratio of groove length is 0.6. Leakage of ferrofluid increases with an increase in intensity of current, volume fraction of ferrofluid, rotating speed, pressure differential, spiral angle and ratio of groove length; decreases with an increase in temperature; and increases at first and then decreases with the increase in the ratio of groove width to weir. The tendencies of characteristics of silicone oil are consistent with those of ferrofluid, and the characteristics of silicone oil are smaller than those of ferrofluid under the same condition.

Originality/value

The volume fraction of ferrofluid, rotating speed, spiral angle, ratio of groove width to weir, groove length and temperature have a significant influence on the characteristics of ferrofluid film; however, intensity of current and the pressure differential have slight influence on the characteristics of ferrofluid film. An analytical method for analyzing hydrodynamic lubrication characteristics of ferrofluid film in a spiral groove mechanical seal was proposed based on the Muijderman narrow groove theory.

Details

Industrial Lubrication and Tribology, vol. 70 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 January 2018

Yun He, Fanghong Sun and Xuelin Lei

This study aims to obtain diamond-coated mechanical seals with improved sealing performance and considerable cost. To achieve this purpose, the study focuses on depositing…

Abstract

Purpose

This study aims to obtain diamond-coated mechanical seals with improved sealing performance and considerable cost. To achieve this purpose, the study focuses on depositing uniform, wear-resistant and easily polished diamond coatings on massive mechanical seals in a large-scale vacuum chamber.

Design/methodology/approach

The computational fluid dynamics simulation test and its corresponding deposition experiment are carried out to improve the uniformity of diamond films on massive mechanical seals. The polishing properties and sealing performance of mechanical seals coated with three different diamond films (microcrystalline diamond [MCD], nanocrystalline diamond [NCD] and microcrystalline/nanocrystalline diamond [MNCD]) and uncoated mechanical seals are comparatively studied using the polishing tests and dynamic seal tests to obtain the optimized diamond coating type on the mechanical seals.

Findings

The substrate rotation and four gas outlets distribution are helpful for depositing uniform diamond coatings on massive mechanical seals. The MNCD-coated mechanical seal shows the advantages of high polishing efficiency in the initial polishing process and excellent wear resistance and self-lubrication property in the follow-up polishing period because of its unique composite diamond film structures. The MNCD-coated mechanical seal shows the longest working life under dry friction condition, about 14, 1.27 and 1.9 times of that for the uncoated, MCD and NCD coated mechanical seals, respectively.

Originality/value

The effect of substrate rotation and gas outlets distribution on temperature and gas flow field during diamond deposition procedure is simulated. The MNCD-coated mechanical seal exhibits a superior sealing performance compared with the MCD-coated, NCD-coated and uncoated mechanical seals, which is helpful for decreasing the operating system shut-down frequency and saving operating energy consumption.

Details

Industrial Lubrication and Tribology, vol. 70 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2016

Zhaoxu Jin, Shuangxi Li, Jining Cai and qiuxiang zhang

This paper aims to introduce a new type of analysis method to seek the actual working performance of the regulatable dry gas seal, including equilibrium film thickness…

Abstract

Purpose

This paper aims to introduce a new type of analysis method to seek the actual working performance of the regulatable dry gas seal, including equilibrium film thickness, stiffness-leakage ratio and so on. Additionally, a parametric optimization of the hydrostatic structure is completed for this kind of seal.

Design/methodology/approach

From the point of axial force balance based on gas lubrication theory, a new analysis method, the Gas Film Divided Method, has been introduced. A four-factor and three-level hydrostatic structural parameters test scheme is designed by means of Central Composite Design test and then the hydrostatic structural parameters of regulatable dry gas seal were optimized. Three types of regulatable dry gas seal have been designed and manufactured to verify the theoretical analysis by measuring the equilibrium film thickness and inward leakage.

Findings

The results indicate that the numerical values of the Gas Film Divided (GFD) method agree well with the experimental ones. Test proves that the Central Composite Design test could achieve optimized hydrostatic structural parameters of regulatable dry gas seal effectively.

Research limitations/implications

For validating the correctness of the GFD method, an experiment study of the regulatable dry gas seal is being carried out where atmosphere is selected as the lubricant for the sake of safety. Soon after, the author will discuss the application in the new paper.

Originality/value

The introduction of the GFD method proffers important insights to seek the performances of regulatable dry gas seal under the actual working conditions. The detailed optimal values of the hydrostatic structural parameters were given by the theoretical research which may be helpful for the design of regulatable dry gas seal.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 26 June 2007

Erdem Koç and Emel Ceyhun Sabir

The main purpose of the research work carried out is to investigate the hydraulic balance conditions of the sealing ring of a mechanical radial face seal in terms of the residual…

Abstract

Purpose

The main purpose of the research work carried out is to investigate the hydraulic balance conditions of the sealing ring of a mechanical radial face seal in terms of the residual load acting on the ring by employing the theoretical model developed mentioned in the first part of the investigation.

Design/methodology/approach

The end load balance conditions for the movable seal ring have been examined by considering the residual load acting on the ring under all running conditions. The main lubrication and sealing mechanism is assumed to be due to the existence of the relative tilt between the mating surfaces, which is formed by the bearing misalignment. The aim of the theoretical model developed is to predict the necessary minimum film thickness between the relatively moving surfaces by considering the non‐dimensional running (operating) conditions and the geometrical parameters defined. The theoretical model is based on the main differential equation (Reynolds' equation) which is achieved by adopting the standard finite difference form.

Findings

Under the combination of the hydrostatic clamping forces and hydrodynamic restoring forces, an equilibrium position is reached with the seal ring displaced from its central position. At a particular non‐dimensional pressure, the seal ring comes into contact with the stationary plate and this limits the upper value of pressure that can be resisted by the mechanical seal type examined without metal‐metal contact. With the theoretical model developed, it was found that the minimum film thickness between the realtively moving surfaces could be predicted.

Originality/value

This paper provides a considerable scientific contribution to the field of lubrication and sealing aspect of the mechanical radial face seals. The results presented in the first part of the investigation and the remarks outlined in this paper would be considered as a design tool for the seal designers with special reference to ring behaviour under hydrodynamic and hydrostatic conditions.

Details

Industrial Lubrication and Tribology, vol. 59 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 6 September 2024

Wei Chen, Hengjie Xu, Wenyuan Mao, Meihong Liu, Xuejian Sun and Qiangguo Deng

This study aims to investigate the influence mechanism of thermal-mechanical deformations on the CO2 mixture gases dry gas seal (DGS) flow field and compare the deformation…

Abstract

Purpose

This study aims to investigate the influence mechanism of thermal-mechanical deformations on the CO2 mixture gases dry gas seal (DGS) flow field and compare the deformation characteristics and sealing performance between two-way and one-way thermal-fluid-solid coupling models.

Design/methodology/approach

The authors established a two-way thermal-fluid-solid coupling model by using gas film thickness as the transfer parameter between the fluid and solid domain, and the model was solved using the finite difference method and finite element method. The thermal-mechanical deformations of the sealing rings, the influence of face deformation on the flow field and sealing performance were obtained.

Findings

Thermal-mechanical deformations cause a convergent gap between the two sealing end faces, resulting in an increase in the gas film thickness, but a decrease in the gas film temperature and sealing ring temperature. The axial relative deformations of rotating and stationary ring end faces caused by mechanical and thermal loads in the two-way coupling model are less than those in the one-way coupling (OWC) model, and the gas film thickness and leakage rate are larger than those in the OWC model, whereas the gas film stiffness is the opposite.

Originality/value

This paper provides a theoretical support and reference for the operational stability and structural optimization design of CO2 mixture gases DGS under high-pressure and high-speed operation conditions.

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000