Search results

1 – 10 of over 1000
Article
Publication date: 16 November 2023

Shuai Yang, Junxing Hou, Xiaodong An and Shuanghui Xi

The floating ring generates elastic deformation as the film pressure for high-speed floating ring bearings (FRBs). The purpose of this study is to investigate the influence of…

Abstract

Purpose

The floating ring generates elastic deformation as the film pressure for high-speed floating ring bearings (FRBs). The purpose of this study is to investigate the influence of ring elastic deformation on the performance of a hydrodynamic/hydrostatic FRB, including floating ring equilibrium and minimum film thickness.

Design/methodology/approach

The finite element method and finite difference method are used to solve thermohydrodynamic (THD) lubrication models, including the Reynolds equation, energy equation and temperature–viscosity equation. The deformation matrix method is applied to solve the elastic deformation equation, and then the deformation distribution, floating ring equilibrium and minimum film thickness are investigated. The maximum pressure is compared with the published article to verify the mathematical models.

Findings

The deformation value increases with the growth of shaft speed; owing to elastic deformation on the film reaction force and friction moment, the ring achieves equilibrium at a new position, and the inner eccentricity increases while the ring-shaft speed ratio declines. The minimum film thickness declines with the growth of inlet temperature, and the outer film tends to rupture considering elastic deformation at a higher temperature.

Originality/value

The floating ring elastic deformation is coupled with the THD lubrication equations to study ring deformation on the hydrodynamic/hydrostatic FRB lubrication mechanism. The elastic deformation of floating ring should be considered to improve analysis accuracy for FRBs.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-05-2023-0139/

Details

Industrial Lubrication and Tribology, vol. 75 no. 10
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 13 April 2023

Hengjie Xu, Yinggang Yue, Pengyun Song, Wenyuan Mao, Qiangguo Deng and Xuejian Sun

This study aims to acquire the influence mechanism of gas film adaptive adjustment (GFAA) acted on the dynamic characteristics of spiral groove dry gas seal (S-DGS) and then…

Abstract

Purpose

This study aims to acquire the influence mechanism of gas film adaptive adjustment (GFAA) acted on the dynamic characteristics of spiral groove dry gas seal (S-DGS) and then propose a sealing stability enhancement measure.

Design/methodology/approach

The gas film dynamic stiffness and damping of S-DGS are obtained by numerically solving the transient Reynolds equation based on perturbation method and finite difference method. The dynamic coefficients in GFAA model and constant gas film thickness (CGFT) model are compared and analyzed.

Findings

There is the risk to misestimate the instability of DGS with rotational speed or medium pressure grows under the condition of CGFT assumption. Based on GFAA model, increasing balance ratio B properly is an effective measure to improve the stability of DGS. The balance ratio can stimulate the sensitivity of gas film dynamic coefficients to the variation of rotational speed. Increasing medium pressure in small balance ratio range will be conducive to reducing the risk of angular instability.

Originality/value

The influence mechanism of GFAA on S-DGS dynamic characteristics is analyzed. The interactions between rotational speed and balance ratio, medium pressure and balance ratio acted on gas film dynamic characteristics are explored based on the GFAA model.

Details

Industrial Lubrication and Tribology, vol. 75 no. 4
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 8 February 2016

Zhaoxu Jin, Shuangxi Li, Jining Cai and qiuxiang zhang

This paper aims to introduce a new type of analysis method to seek the actual working performance of the regulatable dry gas seal, including equilibrium film thickness

Abstract

Purpose

This paper aims to introduce a new type of analysis method to seek the actual working performance of the regulatable dry gas seal, including equilibrium film thickness, stiffness-leakage ratio and so on. Additionally, a parametric optimization of the hydrostatic structure is completed for this kind of seal.

Design/methodology/approach

From the point of axial force balance based on gas lubrication theory, a new analysis method, the Gas Film Divided Method, has been introduced. A four-factor and three-level hydrostatic structural parameters test scheme is designed by means of Central Composite Design test and then the hydrostatic structural parameters of regulatable dry gas seal were optimized. Three types of regulatable dry gas seal have been designed and manufactured to verify the theoretical analysis by measuring the equilibrium film thickness and inward leakage.

Findings

The results indicate that the numerical values of the Gas Film Divided (GFD) method agree well with the experimental ones. Test proves that the Central Composite Design test could achieve optimized hydrostatic structural parameters of regulatable dry gas seal effectively.

Research limitations/implications

For validating the correctness of the GFD method, an experiment study of the regulatable dry gas seal is being carried out where atmosphere is selected as the lubricant for the sake of safety. Soon after, the author will discuss the application in the new paper.

Originality/value

The introduction of the GFD method proffers important insights to seek the performances of regulatable dry gas seal under the actual working conditions. The detailed optimal values of the hydrostatic structural parameters were given by the theoretical research which may be helpful for the design of regulatable dry gas seal.

Details

Industrial Lubrication and Tribology, vol. 68 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 November 2021

Yuan Chen, Hao Shang, Xiaolu Li, Yuntang Li, Bingqing Wang and Xudong Peng

The purpose of this paper is to investigate the influence rule and mechanism of three degrees of freedom film thickness disturbance on the transient performance of spiral groove…

Abstract

Purpose

The purpose of this paper is to investigate the influence rule and mechanism of three degrees of freedom film thickness disturbance on the transient performance of spiral groove, upstream pumping spiral groove dry gas seal (UP-SDGS) and double-row spiral groove dry gas seal (DR-SDGS).

Design/methodology/approach

The transient performance of spiral groove, UP-SDGS and DR-SDGS are obtained by solving the transient Reynolds equation under different axial and angular disturbance coefficients. The transient and steady performance of the above-mentioned DGSs are compared and analyzed.

Findings

The film thickness disturbance has a remarkable impact on the sealing performance of DGS with different structures and the calculation deviations of the leakage rate of the UP-DGS will increase significantly if the film thickness disturbance is ignored. The axial and angular disturbance jointly affect the film thickness distribution of DGS, but there is no significant interaction between them on the transient sealing performance.

Originality/value

The influence mechanism of axial disturbance and angular disturbance on the transient performance of typical SDGSs behavior has been explained by theory. Considering small and large disturbance, the interaction between axial disturbance and angular disturbance on the transient performance have been studied.

Details

Industrial Lubrication and Tribology, vol. 74 no. 1
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 30 August 2023

Jian Wei, XiaoYue Sun, Jing Tian and CaiHong Liu

This paper aims to study the impact of transient velocity changes on sealing performance during reciprocating sealing processes.

110

Abstract

Purpose

This paper aims to study the impact of transient velocity changes on sealing performance during reciprocating sealing processes.

Design/methodology/approach

Establish a model of transient mixed lubrication, solve the transient Reynolds equation, consider the effect of temperature rise at the seal interfaces, and determine the behavior of the seal interfaces, such as film thickness and fluid pressure. Evaluation with friction and leakage rate, calculate the variation of sealing performance with reciprocating velocity under different working conditions, and verify it through bench experiments.

Findings

Within a reciprocating stroke, the frictional force decreases with increasing velocity, and the frictional force of the outstroke is greater than that of the instroke; at the time of the stroke transition, the fluid pressure is smallest and the rough peak contact pressure is greatest. At present, the dynamic pressure effect of fluids is the largest, and the friction force also increases, which increases the risk of material wear and failure. Friction and leakage increase with increasing pressure and root mean square roughness. As temperature increases, friction increases and leakage decreases. In studying the performance variations of seal components through a reciprocating sealing experiment, it was found that the friction force decreases with increasing velocity, which is consistent with the calculated results and more similar to the calculated results considering the temperature rise.

Originality/value

This study provides a reference for the study of transient sealing performance.

Details

Industrial Lubrication and Tribology, vol. 75 no. 9
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 14 March 2020

Guiyue Kou, Xinghu Li, Yan Wang, Mouyou Lin, Chunsen Tan and Mingfei Mou

The purpose of this paper is to enhance film stiffness and control seal leakage of conventional spiral groove dry gas seal (S-DGS) at a high-speed condition by introducing a new…

Abstract

Purpose

The purpose of this paper is to enhance film stiffness and control seal leakage of conventional spiral groove dry gas seal (S-DGS) at a high-speed condition by introducing a new type superellipse surface groove.

Design/methodology/approach

The steady-state performance and dynamic characteristics of superellipse groove dry gas seal and S-DGS are compared numerically at a high-speed condition. The optimized superellipse grooves for maximum steady-state film stiffness and dynamic stiffness coefficient are obtained.

Findings

Properly designed superellipse groove dry gas seal provides remarkable larger steady-state film stiffness, dynamic stiffness coefficient and lower leakage rate at a high-speed condition compared to a typical S-DGS. The optimal values of first superellipse coefficient for maximum steady and dynamic stiffness are 1.3 and 1.4, whereas the optimal values of second superellipse coefficient for which are 1.4 and 2.0, respectively.

Originality/value

A new type of molded line, namely, superellipse curve, is proposed to act as the boundary lines of surface groove of dry gas seal, as an alternative of typical logarithm helix. The conclusions provide references for surface groove design with larger stiffness and lower leakage rate at a high-speed condition.

Details

Industrial Lubrication and Tribology, vol. 72 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 1 April 1972

H.L. HUNT

Previous articles in this series were concerned with the lubricant handling consultant's survey (September and November issues) and in this, the last part, the actual figures…

Abstract

Previous articles in this series were concerned with the lubricant handling consultant's survey (September and November issues) and in this, the last part, the actual figures showing savings to be effected are given. We have taken up with Mr. Hunt the practicability of the suggestions made in this series—workmen spending most of their time humping oil barrels or buckets of oil, hundreds of hours spent in walking between machine and stores. We have received the most reliable evidence that the figures given in this article are the average of a number of real surveys that Mr. Hunt's staff have carried out. And what is more, this state of affairs exists all too often at large companies who should know better and whose production methods are otherwise very efficient.

Details

Industrial Lubrication and Tribology, vol. 24 no. 4
Type: Research Article
ISSN: 0036-8792

Article
Publication date: 7 August 2018

Songtao Hu, Noel Brunetiere, Weifeng Huang, Xi Shi, Zhike Peng, Xiangfeng Liu and Yuming Wang

Face contact has a strong impact on the service life of non-contacting gas face seals; the current research which mainly focuses on the face contact had appeared during the…

Abstract

Purpose

Face contact has a strong impact on the service life of non-contacting gas face seals; the current research which mainly focuses on the face contact had appeared during the startup or shutdown operation. This paper aims to present a closed-form contact model of a gas face seal during the opened operation.

Design/methodology/approach

Referring to the axial rub-impact model of rotor dynamics, a closed-form contact model is developed under a nonparallel plane contact condition that corresponds to the local face contact of sealing rings arising from some disturbances during the opened operation. The closed-form contact model and a direct numerical contact model are performed on Gaussian surfaces to compare the contact behavior.

Findings

The closed-form contact model is in a good agreement with the direct numerical contact model. However, the closed-form contact model cannot involve the influence of grooves on the sealing ends. The error is eliminated in some other types of gas face seals such as coned gas face seals. Besides non-contacting face seals, the closed-form model can be applied to the axial rub impact of rotor dynamics.

Originality value

A closed-form contact model of a gas face seal is established during the opened operation. The closed-form contact model is validated by a direct numerical contact model. The closed-form contact model also suits for axial rub-impact of rotor dynamics.

Details

Industrial Lubrication and Tribology, vol. 70 no. 6
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 11 April 2016

Zhongliang Xie, Zhu-shi Rao, Na Ta and Ling Liu

This paper aims to provide efficient methods to calculate the friction coefficients and film thickness ratios in mixed lubrication (ML) regime for water lubricated bearings…

Abstract

Purpose

This paper aims to provide efficient methods to calculate the friction coefficients and film thickness ratios in mixed lubrication (ML) regime for water lubricated bearings. Mathematical models consider influence of micro-asperities contacts which is based on the Gauss random distribution.

Design/methodology/approach

Effects of external loads, rotating speeds and radial clearances are obtained. Algorithm shown here is applied to a class of common industrial problems. Calculated Stribeck values are given and evaluated. The calculated and experimental results agree well which proves the correctness of the model.

Findings

In Part I, the authors believe that the paper presents the following for the first time: universal methods are developed for the calculation of friction coefficients and film thickness ratios (lambda) in ML regime; effects of different external loads, rotating speeds and radial clearances on friction coefficients and film thickness ratios are presented in detail; comparisons are made between the results predicted by the model and experimental results, and they agree rather well which proves the correctness of the model.

Originality/value

Present work successfully develops universal methods for predicting the friction coefficients and film thickness ratios.

Details

Industrial Lubrication and Tribology, vol. 68 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 17 August 2010

Yuan Kang, Cheng‐Hsien Chen, Jian‐Lin Lee, Juhn‐Horng Chen and Yeon‐Pun Chang

The purpose of this paper is to investigate the static stiffness of hydrostatic bearings with three constant compensations in types of constant‐flow pump, capillary and orifice…

Abstract

Purpose

The purpose of this paper is to investigate the static stiffness of hydrostatic bearings with three constant compensations in types of constant‐flow pump, capillary and orifice, and both single‐action and double‐action variable restrictors with cylindrical‐spool, tapered‐spool, and membrane types by film gradient and recess pressure.

Design/methodology/approach

This paper utilizes the equations of flow equilibrium to determine the variations of film thickness or displacement of loading table with respect to the varying of recess pressure. For a hydrostatic bearing whose recess pressures are controlled by compensations, the stiffness characteristics can be presented directly by these variations.

Findings

The usage range of recess pressure and compensation parameters should be selected to correspond to a variation with smallest gradient.

Originality/value

This paper proposes an extensive database as a critical requirement for the selection of types and parameters of the compensation as to yield the acceptable or optimized characteristics in design of hydrostatic bearings.

Details

Industrial Lubrication and Tribology, vol. 62 no. 5
Type: Research Article
ISSN: 0036-8792

Keywords

1 – 10 of over 1000