Search results

1 – 10 of 412
Article
Publication date: 11 March 2022

Qun Gao, Bin Liu, Jide Sun, Chunlu Liu and Youquan Xu

This paper aims to better understand the linkage between CO2 emitters and industrial consumers. The border-crossing frequency is applied to calculate the average number of steps…

Abstract

Purpose

This paper aims to better understand the linkage between CO2 emitters and industrial consumers. The border-crossing frequency is applied to calculate the average number of steps that a country takes in relation to the CO2 emissions of its construction industry. The maximum border-crossing frequency and declining speed of CO2 transfer are used to reveal the relationship between the length of production chains and the transfer efficiency of construction products.

Design/methodology/approach

This paper maps the CO2 transfer that accompanies global production chains using the frequency of border crossing in the production processes of construction products. As the basic analysis framework, a multi-regional input–output model is adopted to analyse the average border-crossing frequency of CO2 transfer. Additionally, indicators including the maximum border-crossing frequency and declining speed of CO2 transfer are employed. Also, the maximum border-crossing frequency and declining speed of CO2 transfer are used to reveal the relationship between the length of production chains and the transfer efficiency of construction products.

Findings

The results indicate that 85.49% of the CO2 in construction products needs to be processed in at least one country, reflecting that direct trade is the major pattern of transfer of CO2 from primary producers in global construction industries. The maximum border-crossing frequency is 4.88 for 15 economies, meaning that construction products cross the international borders up to 4.88 times before they are absorbed by the final users. The scale of the average border-crossing frequency ranged from 1.16 to 1.87 over 2000–2014, indicating that the original construction products crossed the international borders at least 1.16 times to satisfy the final demand of the consuming countries.

Research limitations/implications

The data from the economic MRIO tables in the WIOD are only available until 2014, which is a limitation for conducting this research in recent years.

Originality/value

The fragmentation of production is not only reshaping global trade patterns, but also leading to the separation of CO2 emitters and final consumers in production chains. A growing number of studies have focussed on the impact of production fragmentation on accounting for regional and national CO2 emissions, but little research has been done at the scale of a specific industry. The major contribution of this paper lies in mapping the CO2 emissions that accompany the production chains of construction products from the perspectives of both magnitude and length. Additionally, this paper is the first to propose using maximum border-crossing frequency and declining speed to analyse the characteristics of global production chains induced by the final demand of major economies for construction products.

Details

Engineering, Construction and Architectural Management, vol. 30 no. 6
Type: Research Article
ISSN: 0969-9988

Keywords

Open Access
Article
Publication date: 25 March 2024

Tiago Ferreira Barcelos and Kaio Glauber Vital Costa

This study aims to analyze and compare the relationship between international trade in global value chains (GVC) and greenhouse gas (GHG) emissions for Brazil and China from 2000…

Abstract

Purpose

This study aims to analyze and compare the relationship between international trade in global value chains (GVC) and greenhouse gas (GHG) emissions for Brazil and China from 2000 to 2016.

Design/methodology/approach

The input-output method apply to multiregional tables from Eora-26 to decompose the GHG emissions of the Brazilian and Chinese productive structure.

Findings

The data reveals that Chinese production and consumption emissions are associated with power generation and energy-intensive industries, a significant concern among national and international policymakers. For Brazil, the largest territorial emissions captured by the metrics come from services and traditional industry, which reveals room for improving energy efficiency. The analysis sought to emphasize how the productive structure and dynamics of international trade have repercussions on the environmental dimension, to promote arguments that guide the execution of a more sustainable, productive and commercial development strategy and offer inputs to advance discussions on the attribution of climate responsibility.

Research limitations/implications

The metrics did not capture emissions related to land use and deforestation, which are representative of Brazilian emissions.

Originality/value

Comparative analysis of emissions embodied in traditional sectoral trade flows and GVC, on backward and forward sides, for developing countries with the main economic regions of the world.

Details

EconomiA, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1517-7580

Keywords

Open Access
Article
Publication date: 22 April 2020

David Ness

While most efforts to combat climate change are focussed on energy efficiency and substitution of fossil fuels, growth in the built environment remains largely unquestioned. Given…

Abstract

While most efforts to combat climate change are focussed on energy efficiency and substitution of fossil fuels, growth in the built environment remains largely unquestioned. Given the current climate emergency and increasing scarcity of global resources, it is imperative that we address this “blind spot” by finding ways to support required services with less resource consumption.

There is now long overdue recognition to greenhouse gas emissions “embodied” in the production of building materials and construction, and its importance in reaching targets of net zero carbon by 2050. However, there is a widespread belief that we can continue to “build big”, provided we incorporate energy saving measures and select “low carbon materials” – ignoring the fact that excessive volume and area of buildings may outweigh any carbon savings. This is especially the case with commercial real estate.

As the inception and planning phases of projects offer most potential for reduction in both operational and embodied carbon, we must turn our attention to previously overlooked options such as “build nothing” or “build less”. This involves challenging the root cause of the need, exploring alternative approaches to meet desired outcomes, and maximising the use of existing assets. If new build is required, this should be designed for adaptability, with increased stewardship, so the building stock of the future will be a more valuable and useable resource.

This points to the need for increased understanding and application of the principles of strategic asset management, hitherto largely ignored in sustainability circles, which emphasize a close alignment of assets with the services they support.

Arguably, as the built environment consumes more material resources and energy than any other sector, its future configuration may be critical to the future of people and the planet. In this regard, this paper seeks to break new ground for deeper exploration.

Article
Publication date: 18 November 2021

Brit Anak Kayan and Nur Nadhifah Ashraf

Heritage buildings are consistently impacted by technical and pathological issues associated with their maintenance and conservation such as diminish of building's authenticity…

Abstract

Purpose

Heritage buildings are consistently impacted by technical and pathological issues associated with their maintenance and conservation such as diminish of building's authenticity and damaging environmental impact. This paper aims to evaluate the environmental maintenance impact (EMI) of the Singgora roof tiles repair in heritage buildings. The EMI is an evaluation upon embodied carbon expenditure during maintenance phase, thus important in repair efficiency appraisal.

Design/methodology/approach

Calculation procedures within selected boundaries of life cycle assessment (LCA) and arbitrary period enabled evaluation of the EMI of Singgora roof tiles repair in heritage buildings during the maintenance phase.

Findings

Evaluation of the EMI could be appreciated as a carbon LCA of Singgora roof tiles repair and has been recognised in embodied carbon expenditure reduction in the form of CO2 emissions mitigation. Importantly, the evaluation underpins decision-making for heritage buildings repair.

Practical implications

EMI evaluation encompasses all building types and forms, thus comprehends the associated applied methodologies. Moreover, the evaluation reflects the emerging environmental challenges of sustaining resilient buildings globally.

Social implications

EMI evaluation highlights options that may be adopted in repair. Indirectly, this implicates heritage building preservation and place's identity protection. Significantly, the evaluation supports environmentally focused conservation and promotes a sustainable repair approach.

Originality/value

EMI evaluation of this paper may devoted to the holistic understanding of the complex relations between Singgora roof materials and their environmental performance. Meanwhile, the application of a carbon LCA had dictated integration of multidisciplinary of heritage buildings maintenance and conservation.

Details

International Journal of Building Pathology and Adaptation, vol. 41 no. 5
Type: Research Article
ISSN: 2398-4708

Keywords

Open Access
Article
Publication date: 22 March 2024

Abdul Rauf, Daniel Efurosibina Attoye and Robert H. Crawford

Recently, there has been a shift toward the embodied energy assessment of buildings. However, the impact of material service life on the life-cycle embodied energy has received…

Abstract

Purpose

Recently, there has been a shift toward the embodied energy assessment of buildings. However, the impact of material service life on the life-cycle embodied energy has received little attention. We aimed to address this knowledge gap, particularly in the context of the UAE and investigated the embodied energy associated with the use of concrete and other materials commonly used in residential buildings in the hot desert climate of the UAE.

Design/methodology/approach

Using input–output based hybrid analysis, we quantified the life-cycle embodied energy of a villa in the UAE with over 50 years of building life using the average, minimum, and maximum material service life values. Mathematical calculations were performed using MS Excel, and a detailed bill of quantities with >170 building materials and components of the villa were used for investigation.

Findings

For the base case, the initial embodied energy was 57% (7390.5 GJ), whereas the recurrent embodied energy was 43% (5,690 GJ) of the life-cycle embodied energy based on average material service life values. The proportion of the recurrent embodied energy with minimum material service life values was increased to 68% of the life-cycle embodied energy, while it dropped to 15% with maximum material service life values.

Originality/value

The findings provide new data to guide building construction in the UAE and show that recurrent embodied energy contributes significantly to life-cycle energy demand. Further, the study of material service life variations provides deeper insights into future building material specifications and management considerations for building maintenance.

Details

Engineering, Construction and Architectural Management, vol. 31 no. 13
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 February 2024

Nazanin Eisazadeh, Frank De Troyer and Karen Allacker

The aim is to holistically assess the environmental performance of windows and analyse how their design and characteristics contribute to the overall performance of the…

Abstract

Purpose

The aim is to holistically assess the environmental performance of windows and analyse how their design and characteristics contribute to the overall performance of the building/space. This study focuses on the performance of windows in patient rooms hosting less mobile people.

Design/methodology/approach

This study investigates the life cycle environmental impacts of different glazing types, window frames and fire safety doors at the product level. This article also presents a building-integrated environmental analysis of patient rooms that considers the multiple functionalities of windows by incorporating dynamic energy analysis, comfort and daylighting performance with a life cycle assessment (LCA) study.

Findings

The results indicate that the amount of flat glass is the main contributor to the environmental impacts of the glazing units. As for the patient rooms, global warming shows the most significant contribution to the environmental costs, followed by human toxicity, particulate matter formation and eutrophication. The key drivers for these impacts are production processes and operational energy use. This study highlights the significance of evaluating a wide range of criteria for assessing the performance of windows.

Originality/value

An integrated assessment approach is used to investigate the influence of windows on environmental performance by considering the link between window/design parameters and their effects on energy use/costs, daylighting, comfort and environmental impacts. The embodied impacts of different building elements and the influence of various design parameters on environmental performance are assessed and compared. The environmental costs are expressed as an external environmental cost (euro).

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 19 December 2022

Annika Herth and Kornelis Blok

The purpose of this paper is to present a comprehensive analysis of the carbon footprint of the Delft University of Technology (TU Delft), including direct and indirect emissions…

4682

Abstract

Purpose

The purpose of this paper is to present a comprehensive analysis of the carbon footprint of the Delft University of Technology (TU Delft), including direct and indirect emissions from utilities, logistics and purchases, as well as a discussion about the commonly used method. Emissions are presented in three scopes (scope 1 reports direct process emissions, scope 2 reports emissions from purchased energy and scope 3 reports indirect emissions from the value chain) to identify carbon emission hotspots within the university’s operations.

Design/methodology/approach

The carbon footprint was calculated using physical and monetary activity data, applying a process and economic input-output analysis.

Findings

TU Delft’s total carbon footprint in 2018 is calculated at 106 ktCO2eq. About 80% are indirect (scope 3) emissions, which is in line with other studies. Emissions from Real estate and construction, Natural gas, Equipment, ICT and Facility services accounted for about 64% of the total footprint, whereas Electricity, Water and waste-related carbon emissions were negligible. These findings highlight the need to reduce universities’ supply chain emissions.

Originality/value

A better understanding of carbon footprint hotspots can facilitate strategies to reduce emissions and finally achieve carbon neutrality. In contrast to other work, it is argued that using economic input-output models to calculate universities’ carbon footprints is a questionable practice, as they can provide only an initial estimation. Therefore, the development of better-suited methods is called for.

Details

International Journal of Sustainability in Higher Education, vol. 24 no. 9
Type: Research Article
ISSN: 1467-6370

Keywords

Article
Publication date: 2 February 2024

Pushkar Pushp and Faisal Ahmed

The discourse on global value chains (GVC) is undergoing a transformation in terms of its conceptualisation, theorisation and pragmatic applications. Today, the production systems…

Abstract

Purpose

The discourse on global value chains (GVC) is undergoing a transformation in terms of its conceptualisation, theorisation and pragmatic applications. Today, the production systems have become more complex as global economic order continues to witness marked geo-economic manoeuvring. Thus, the direction of discourse on GVC ought to move from mere theoretical propositions toward becoming more evidence based. There have been recent studies that have used the governance and upgrading propositions by Gary Gereffi and others to seek quantitative evidence. This study aims to decipher the quantitative discourse on GVC and to set the emerging and future research agenda.

Design/methodology/approach

Through a systematic literature review, the authors first analyse the quantitative studies on GVC carried out during the last two decades. The authors then outline a future research agenda and examine a few relevant modelling techniques that could potentially be used to solicit newer evidence in GVC research.

Findings

The authors categorise the quantitative discourse on GVC into three crucial themes, namely, GVC framework, GVC participation and position, environmental aspects and regionalisation in GVC. The most commonly used quantitative techniques are gravity model, panel data estimation, structural decomposition analysis and computable general equilibrium modelling.

Originality/value

This paper contributes to the GVC discourse in two ways. Firstly, the authors argue that the theoretical frameworks within the GVC discourse should be complemented by evidence-based quantitative studies. Secondly, the authors suggest potential modelling techniques that can be used on the emerging and future research agenda.

Details

Critical Perspectives on International Business, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1742-2043

Keywords

Article
Publication date: 28 March 2024

Anna Young-Ferris, Arunima Malik, Victoria Calderbank and Jubin Jacob-John

Avoided emissions refer to greenhouse gas emission reductions that are a result of using a product or are emission removals due to a decision or an action. Although there is no…

Abstract

Purpose

Avoided emissions refer to greenhouse gas emission reductions that are a result of using a product or are emission removals due to a decision or an action. Although there is no uniform standard for calculating avoided emissions, market actors have started referring to avoided emissions as “Scope 4” emissions. By default, making a claim about Scope 4 emissions gives an appearance that this Scope of emissions is a natural extension of the existing and accepted Scope-based emissions accounting framework. The purpose of this study is to explore the implications of this assumed legitimacy.

Design/methodology/approach

Via a desktop review and interviews, we analyse extant Scope 4 company reporting, associated accounting methodologies and the practical implications of Scope 4 claims.

Findings

Upon examination of Scope 4 emissions and their relationship with Scopes 1, 2 and 3 emissions, we highlight a dynamic and interdependent relationship between quantification, commensuration and standardization in emissions accounting. We find that extant Scope 4 assessments do not fit the established framework for Scope-based emissions accounting. In line with literature on the territorializing nature of accounting, we call for caution about Scope 4 claims that are a distraction from the critical work of reducing absolute emissions.

Originality/value

We examine the implications of assumed alignment and borrowed legitimacy of Scope 4 with Scope-based accounting because Scope 4 is not an actual Scope, but a claim to a Scope. This is as an act of accounting territorialization.

Details

Accounting, Auditing & Accountability Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0951-3574

Keywords

Article
Publication date: 12 January 2024

Lipeng Pan, Yongqing Li, Xiao Fu and Chyi Lin Lee

This paper aims to explore the pathways of carbon transfer in 200 US corporations along with the motivations that drive such transfers. The particular focus is on each firm’s…

Abstract

Purpose

This paper aims to explore the pathways of carbon transfer in 200 US corporations along with the motivations that drive such transfers. The particular focus is on each firm’s embeddedness in the global value chain (GVC) and the influence of environmental law, operational costs and corporate social responsibility (CSR). The insights gleaned bridge a gap in the literature surrounding GVCs and corporate carbon transfer.

Design/methodology/approach

The methodology comprised a two-step research approach. First, the authors used a two-sided fixed regression to analyse the relationship between each firm’s embeddedness in the GVC and its carbon transfers. The sample consisted of 217 US firms. Next, the authors examined the influence of environmental law, operational costs and CSR on carbon transfers using a quantitative comparison analysis. These results were interpreted through the theoretical frameworks of the GVC and legitimacy theory.

Findings

The empirical results indicate positive relationships between carbon transfers and GVC embeddedness in terms of both a firm’s position and its degree. From the quantitative comparison, the authors find that the pressure of environmental law and operational costs motivate these transfers through the value chain. Furthermore, CSR does not help to mitigate transfers.

Practical implications

The findings offer insights for policymakers, industry and academia to understand that, with globalised production and greater value creation, transferring carbon to different parts of the GVC – largely to developing countries – will only become more common. The underdeveloped nature of environmental technology in these countries means that global emissions will likely rise instead of fall, further exacerbating global warming. Transferring carbon is not conducive to a sustainable global economy. Hence, firms should be closely regulated and given economic incentives to reduce emissions, not simply shunt them off to the developing world.

Social implications

Carbon transfer is a major obstacle to effectively reducing carbon emissions. The responsibilities of carbon transfer via GVCs are difficult to define despite firms being a major consideration in such transfers. Understanding how and why corporations engage in carbon transfers can facilitate global cooperation among communities. This knowledge could pave the way to establishing a global carbon transfer monitoring network aimed at preventing corporate carbon transfer and, instead, encouraging emissions reduction.

Originality/value

This study extends the literature by investigating carbon transfers and the GVC at the firm level. The authors used two-step research approach including panel data and quantitative comparison analysis to address this important question. The authors are the primary study to explore the motivation and pathways by which firms transfer carbon through the GVC.

Details

Sustainability Accounting, Management and Policy Journal, vol. 15 no. 2
Type: Research Article
ISSN: 2040-8021

Keywords

1 – 10 of 412