Search results

1 – 10 of 806
Article
Publication date: 1 March 1996

Ayech Benjeddou and Mohamed Ali Hamdi

Presents a new B‐spline finite element for the dynamic analysis of unsymmetrical sandwich shells of revolution. The formulation takes account of the membrane and bending effects…

Abstract

Presents a new B‐spline finite element for the dynamic analysis of unsymmetrical sandwich shells of revolution. The formulation takes account of the membrane and bending effects in isotropic or orthotropic elastic facings, and membrane, bending and transverse shearing effects in an isotropic or othotropic elastic core. Both geometry and local displacements are interpolated by a set of B‐spline functions. The main aspects added by the sandwich structure of the element are the transverse shearing and membrane‐bending coupling effects in the core. These are well represented by a set of new variables which are the mean end relative in‐plane displacements of the facing middle surfaces. Together with the transverse displacement, these variables constitute the degrees of freedom (dofs) of this new B‐spline sandwich element. The finite elements are grouped into super‐elements with C1 continuity to obtain the whole finite element model. For each super‐element a total of five dofs per node is then obtained except for its end nodes where the derivatives of these dofs with respect to the meridional co‐ordinate are added. This choice reduces to a minimum the total number of dofs in comparison to existing sandwich elements. Evaluates the efficiency and accuracy of the proposed element through several benchmark examples. Compares the results with the analytical and numerical solutions found in the literature. A very satisfactory behaviour of the element was observed in all test cases.

Details

Engineering Computations, vol. 13 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 19 December 2022

Hsin-Yi Lai and Jing-Hao Kang

This study aims to solve the problems of low flow rate and low efficiency of micropumps in high-frequency applications. This micropump system was proposed to meet the requirements…

89

Abstract

Purpose

This study aims to solve the problems of low flow rate and low efficiency of micropumps in high-frequency applications. This micropump system was proposed to meet the requirements of 1–5 ml/min for microthrusters or drug delivery devices.

Design/methodology/approach

In this paper, a comprehensive analysis indicator and numerical procedure were disclosed and used to demonstrate the fluid dynamic characteristics and performance of a micropump. Accordingly, the reliability of the two-way coupling calculation was ensured through mutual verification of the real structure and the numerical system.

Findings

The research results indicate that the Polydimethylsiloxane (PDMS) microchannel can realize the contraction and expansion mechanism, allowing the fluid to generate different levels of pressure gradient during the working stroke and also enhancing the characteristics of energy consumption and storage of the flow field.

Originality/value

The pressure gradient between the fluid and PDMS microchannel can facilitate the improvement of the fluid backflow in a micropump. Therefore, in terms of performance improvement, the PDMS micropump increased the maximum backflow and optimum efficiency by approximately 50 and 90%, respectively.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 25 December 2020

Krishna LA, Veerappan AR and Shanmugam S

Elastic stress solutions are required in the field of fracture mechanics and the analysis of creep failure. The published precise elastic solutions are not addressing the…

Abstract

Purpose

Elastic stress solutions are required in the field of fracture mechanics and the analysis of creep failure. The published precise elastic solutions are not addressing the influence of the manufacturing process induced, inevitable cross sectional deviations called ovality and thinning. The influence of ovality on plastic limit and collapse loads are reported in literature. Hence, it is important to study the combined effect of ovality and thinning on elastic stresses of bends.

Design/methodology/approach

This paper relies on elastic finite element evolutions of stress components– longitudinal membrane stress, longitudinal bending stress, circumferential membrane stress and circumferential bending stresses. Based on the results, the coefficients for the equations are also obtained through the regression analysis.

Findings

New analytical solutions are prescribed to estimate the elastic stresses at the mid-section of the 90° very thin-walled bend with ovality and thinning, when subjected to in-plane bending moment. The ovality has significant influence on elastic stress whereas the thinning is not so. The proposed equations give an accurate estimation of elastic stresses at the mid-section of the bend with the incorporation of the parameters, namely R/rm, rm/t and ovality.

Research limitations/implications

The influence of shape imperfections, namely ovality and thinning on elastic stress of 90° very thin-walled bends having rm/t > 20, subject to in-plane bending moment is proposed.

Originality/value

The influence of shape imperfections, namely ovality and thinning, on elastic stress of 90° very thin-walled bends with rm/t > 20, subject to in-plane bending moment is proposed.

Details

Multidiscipline Modeling in Materials and Structures, vol. 17 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 April 1990

D.Y. Yang, H.B. Shim and W.J. Chung

The effect of bending is investigated through the comparison of the membrane analysis and the shell analysis for stretching and deep drawing. An incremental formulation…

Abstract

The effect of bending is investigated through the comparison of the membrane analysis and the shell analysis for stretching and deep drawing. An incremental formulation incorporating the effect of shape change and anisotropy is used for the analysis of elastic‐plastic non‐steady large deformation. The deformation during a step is considered using the natural convected coordinate system. Stretching of a square blank with a hemispherical punch and deep drawing of a cyclindrical cup is analysed and the corresponding experiments are carried out. The computational results are compared with the experiments. In stretching, the comparison has shown that both the membrane analysis and the shell analysis are in good agreement with the experiment for punch load and strain distribution. In deep drawing, the computed loads of both the membrane analysis and the shell analysis are generally in good agreement with the experiment. The computed thickness strain of the membrane analysis, however, shows a wide difference with the experiment. In the shell analysis, the thickness strain shows good agreement with the experiment. It has been shown that the membrane approach shows a limitation for the deep drawing process in which the effect of bending is not negligible and more exact informations on the thickness strain distribution are required.

Details

Engineering Computations, vol. 7 no. 4
Type: Research Article
ISSN: 0264-4401

Article
Publication date: 1 March 1996

Adnan Ibrahimbegović

Under restriction of an isotropic elastic response of deformed lattice, develops a covariant theory of finite elastoplasticity in principal axes of a pair of deformation tensors…

Abstract

Under restriction of an isotropic elastic response of deformed lattice, develops a covariant theory of finite elastoplasticity in principal axes of a pair of deformation tensors. In material description, the tensor pair consists of the plastic deformation tensor and the total deformation Cauchy‐Green tensor. Applies the proposed theory to elastoplastic membrane shells, whose references and current configurations can be arbitrary space‐curved surfaces. Pressure‐insensitive von Mises yield criterion with isotropic hardening and a quadratic form of the strain energy function given in terms of elastic principal stretches are considered as a model problem. Through an explicit enforcement of the plane stress condition we arrive at a reduced two‐dimensional problem representation, which is set in the membrane tangent plane. Numerical implementation of the presented theory relies crucially on the operator split methodology to simplify the state update computation. Presents a set of numerical examples in order to illustrate the performance of the presented methodology and indicate possible applications in the area of sheet metal forming.

Details

Engineering Computations, vol. 13 no. 2/3/4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 March 2021

Haohan Sun and Si Yuan

A general strategy is developed for adaptive finite element (FE) analysis of free vibration of elastic membranes based on the element energy projection (EEP) technique.

Abstract

Purpose

A general strategy is developed for adaptive finite element (FE) analysis of free vibration of elastic membranes based on the element energy projection (EEP) technique.

Design/methodology/approach

By linearizing the free vibration problem of elastic membranes into a series of linear equivalent problems, reliable a posteriori point-wise error estimator is constructed via EEP super-convergent technique. Hierarchical local mesh refinement is incorporated to better deal with tough problems.

Findings

Several classical examples were analyzed, confirming the effectiveness of the EEP-based error estimation and overall adaptive procedure equipped with a local mesh refinement scheme. The computational results show that the adaptively-generated meshes reasonably catch the difficulties inherent in the problems and the procedure yields both eigenvalues with required accuracy and mode functions satisfying user-preset error tolerance in maximum norm.

Originality/value

By reasonable linearization, the linear-problem-based EEP technique is successfully transferred to two-dimensional eigenproblems with local mesh refinement incorporated to effectively and flexibly deal with singularity problems. The corresponding adaptive strategy can produce both eigenvalues with required accuracy and mode functions satisfying user-preset error tolerance in maximum norm and thus can be expected to apply to other types of eigenproblems.

Details

Engineering Computations, vol. 38 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 2 August 2019

Mengna Cai, Hongyan Tian, Haitao Liu and Yanhui Qie

With the development of the modern technology and aerospace industry, the noise pollution is remarkably affecting people’s daily life and has been become a serious issue…

Abstract

Purpose

With the development of the modern technology and aerospace industry, the noise pollution is remarkably affecting people’s daily life and has been become a serious issue. Therefore, it is the most important task to develop efficient sound attenuation barriers, especially for the low-frequency audible range. However, low-frequency sound attenuation is usually difficult to achieve for the constraints of the conventional mass-density law of sound transmission. The traditional acoustic materials are reasonably effective at high frequency range. This paper aims to discuss this issue.

Design/methodology/approach

Membrane-type local resonant acoustic metamaterial is an ideal low-frequency sound insulation material for its structure is simple and lightweight. In this paper, the finite element method is used to study the low-frequency sound insulation performances of the coupled-membrane type acoustic metamaterial (CMAM). It consists of two identical tensioned circular membranes with fixed boundary. The upper membrane is decorated by a rigid platelet attached to the center. The sublayer membrane is attached with two weights, a central rigid platelet and a concentric ring with inner radius e. The influences of the distribution and number of the attached mass, also asymmetric structure on the acoustic attenuation characteristics of the CMAM, are discussed.

Findings

In this paper, the acoustic performance of asymmetric coupled-membrane metamaterial structure is discussed. The influences of mass number, the symmetric and asymmetry structure on the sound insulation performance are analyzed. It is shown that increasing the number of mass attached on membrane, structure exhibits low-frequency and multi-frequency acoustic insulation phenomenon. Compared with the symmetrical structure, asymmetric structure shows the characteristics of lightweight and multi-frequency sound insulation, and the sound insulation performance can be tuned by adjusting the distribution mode and location of mass blocks.

Originality/value

Membrane-type local resonant acoustic metamaterial is an ideal low-frequency sound insulation material for its structure is simple and lightweight. How to effectively broaden the acoustic attenuation band at low frequency is still a problem. But most of researchers focus on symmetric structures. In this study, the asymmetric coupled-membrane acoustic metamaterial structure is examined. It is demonstrated that the asymmetric structure has better sound insulation performances than symmetric structure.

Details

Multidiscipline Modeling in Materials and Structures, vol. 15 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 9 April 2020

Xiaofeng Wang, Haoyue Chu and Qingshan Yang

This paper aims to numerically study the effects of boundary conditions, pre-stress, material constants and thickness on the dynamic performance of a wrinkled thin membrane.

Abstract

Purpose

This paper aims to numerically study the effects of boundary conditions, pre-stress, material constants and thickness on the dynamic performance of a wrinkled thin membrane.

Design/methodology/approach

Based on the stability theory of plates and shells, the dynamic equations of a wrinkled thin membrane were developed, and they were solved with the Lanczos method

Findings

The effects of wrinkle-influencing factors on the dynamic performance of a wrinkled membrane are determined by the wrinkling stage. The effects are prominent when wrinkling deformation is evolving, but they are very small and can hardly be observed when wrinkling deformation is stable. Mode shapes of a wrinkled membrane are sensitive to boundary conditions, pre-stress and Poisson’s ratio, but its natural frequencies are sensitive to all these five factors.

Practical implications

The research work in this paper is expected to help understand the dynamic behavior of a wrinkled membrane and present access to ensuring its dynamic stability by controlling the wrinkle-influencing factors.

Originality/value

Very few documents investigated the dynamic properties of wrinkled membranes. No attention has yet been paid by the present literature to the global dynamic performance of a wrinkled membrane under the influences of the factors that play a pivotal role in the wrinkling deformation. In view of this, this paper numerically studied the global modes and corresponding frequencies of a wrinkled membrane and their variation with the wrinkle-influencing factors. The results indicate that the global dynamic properties of a wrinkled membrane are sensitive to these factors at the stage of wrinkling evolution.

Article
Publication date: 2 May 2008

Rezia Molfino, Matteo Zoppi and Luca Rimassa

The purpose of this paper is to present a cost‐effective design for a new rescue robot locomotion module using the principle of a continuous sliding membrane to achieve propulsion…

Abstract

Purpose

The purpose of this paper is to present a cost‐effective design for a new rescue robot locomotion module using the principle of a continuous sliding membrane to achieve propulsion ratio (PR) near 1. Such high PR cannot be reached by other locomotion mechanisms that have been proposed.

Design/methodology/approach

The paper first introduces the PR as a reference parameter to assess locomotion effectiveness of snake‐ and worm‐like robots. The state‐of‐the‐art is reviewed. A direction to step beyond getting PR near 1 is indicated. The way is by realizing a continuous sliding membrane. Two solutions in this direction which have been recently proposed are recalled. It is shown that none of them can be practically implemented to realize functioning systems with today's available technology. A new design with membrane actuation has been identified and it is described in detail. A prototype has been realized and earliest results and evidence of functioning described.

Findings

Critical discussion of the concept of locomotion based on a sliding membrane was conducted. A new design for a robot locomotion module applying this concept was presented. Earliest evidence of functioning and effectiveness of the new system proposed was given.

Research limitations/implications

A new locomotion principle is shown. The state‐of‐the‐art background is discussed. A design to realize the new system in a cost‐effective way is described. The research implications lie in the future development of new mobile robots with higher locomotion capability than today's available systems. Several future research and development directions are shown.

Practical implications

A new generation of more locomotion‐effective snake‐ and worm‐robots, especially for rescue application in rubble, is foreseen. The design proposed takes cost‐effectiveness and practical realizability into account.

Originality/value

The continuous sliding membrane concept had been already proposed but no reasonable realization and actuation solutions had been singled out. The design of the new locomotion system is totally new and contains several breakthrough ideas. A prototype is available proving worthy in concept and functioning. It is cost‐effective and this will allow shorter application to real robots.

Details

Industrial Robot: An International Journal, vol. 35 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 19 December 2022

Xiang Liu and G.P. Cai

This paper studies the nonlinear dynamics of membrane structure considering wrinkling effect. The coupling between wrinkles and vibration is investigated elaborately, and new…

Abstract

Purpose

This paper studies the nonlinear dynamics of membrane structure considering wrinkling effect. The coupling between wrinkles and vibration is investigated elaborately, and new insight on the dynamics of wrinkled membrane is unveiled.

Design/methodology/approach

Based on the stability theory of plates and shells, the wrinkling model of the membrane structure is established. Considering the effects of wrinkling and nonlinearity, the dynamic response is calculated with NewMark method.

Findings

Wrinkling will impact the dynamics of the membrane structure significantly for asymmetrical tension loading cases, dynamic response of the wrinkled membrane structure can be classified into three categories: when the vibration is small, the dynamics of the wrinkled membrane structure will behave linearly, and the wrinkles will only affect the dynamic properties as initial conditions; when the vibration is relatively large, the wrinkles will interact with the vibration during the dynamic process, and the dynamics of the structure shows very complex features; when the vibration is large enough, the dynamics will be dominated by the geometric nonlinearity of large-amplitude vibration.

Originality/value

In the previous works on dynamics of wrinkled membrane structure, only the vibration modes have been studied, which means all those investigations are confined with linear vibration; little research has been conducted on the nonlinear dynamics of wrinkled membrane structure. In view of this, this paper presents an investigation of dynamic properties of membrane structure considering the wrinkling and geometric nonlinear effects. This research work presents some novel discoveries on the nonlinear dynamics of wrinkled membrane.

Details

Engineering Computations, vol. 40 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 806