Search results

1 – 3 of 3
Article
Publication date: 4 July 2016

Ayokunle Oluwaseun Ayeleso and Robert R. van Zyl

In the Earth’s upper atmosphere, damage to satellite electronics is caused by exposure to extreme ultraviolet (EUV) radiation. One particular region where this type of radiation

Abstract

Purpose

In the Earth’s upper atmosphere, damage to satellite electronics is caused by exposure to extreme ultraviolet (EUV) radiation. One particular region where this type of radiation occurs is the South Atlantic Magnetic Anomaly region. As a result, there is a need to design and develop a sensor which could be used to investigate the flux and energy levels of radiation in this region. To do so, the aim of this study is to characterise the sensor and its electric response to typical EUV radiation levels based on the photoelectric effect principle.

Design/methodology/approach

For this purpose, a copper plate planar sensor prototype with dimensions that fit on the sides of a one-unit (1U) CubeSat was constructed. The sensor prototype was placed in a vacuum chamber and was subjected to continuous radiation from a vacuum ultraviolet deuterium light source at test facilities available in the Western Cape region (South Africa). Subsequently, the terminal voltage of the sensor was measured and compared with theory.

Findings

The measured time-averaged terminal voltages indicate the generation of photocurrents of the order of 1 μA, which is consistent with theory.

Originality/value

Conclusively, these results validate the measurement approach and operation of the sensor, which can be used to design a 1U CubeSat sensor that measures EUV radiation in low Earth orbit.

Details

Journal of Engineering, Design and Technology, vol. 14 no. 3
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 December 2000

Graham T.T. Molitor

This fourth article in a series of six focuses on mega‐material technologies. Offering the ability to deconstruct and reconstruct matter at atomic and sub‐atomic levels to achieve…

Abstract

This fourth article in a series of six focuses on mega‐material technologies. Offering the ability to deconstruct and reconstruct matter at atomic and sub‐atomic levels to achieve desired properties, mega‐materials are set to radically transform the physical sciences, realising an alchemist’s wildest dreams. Advanced understanding of the bio‐chemistry of life’s instructional genetic codes will be followed by parallel developments in physics and chemistry involving mastery over quantum mechanics, to enable the construction of “designer” materials. Harnessing nanotechnologies will introduce new and novel types of artefact that were previously the stuff of science fiction. Fully understanding and adroitly manipulating sub‐atomic matter will take time, but these technologies are expected to move to a dominant position in the economy between 2200 and 2300.

Details

Foresight, vol. 2 no. 6
Type: Research Article
ISSN: 1463-6689

Keywords

Article
Publication date: 1 April 2005

Jaroslav Mackerle

Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or…

5146

Abstract

Purpose

Ceramic materials and glasses have become important in modern industry as well as in the consumer environment. Heat resistant ceramics are used in the metal forming processes or as welding and brazing fixtures, etc. Ceramic materials are frequently used in industries where a wear and chemical resistance are required criteria (seals, liners, grinding wheels, machining tools, etc.). Electrical, magnetic and optical properties of ceramic materials are important in electrical and electronic industries where these materials are used as sensors and actuators, integrated circuits, piezoelectric transducers, ultrasonic devices, microwave devices, magnetic tapes, and in other applications. A significant amount of literature is available on the finite element modelling (FEM) of ceramics and glass. This paper gives a listing of these published papers and is a continuation of the author's bibliography entitled “Finite element modelling of ceramics and glass” and published in Engineering Computations, Vol. 16, 1999, pp. 510‐71 for the period 1977‐1998.

Design/methodology/approach

The form of the paper is a bibliography. Listed references have been retrieved from the author's database, MAKEBASE. Also Compendex has been checked. The period is 1998‐2004.

Findings

Provides a listing of 1,432 references. The following topics are included: ceramics – material and mechanical properties in general, ceramic coatings and joining problems, ceramic composites, piezoceramics, ceramic tools and machining, material processing simulations, fracture mechanics and damage, applications of ceramic/composites in engineering; glass – material and mechanical properties in general, glass fiber composites, material processing simulations, fracture mechanics and damage, and applications of glasses in engineering.

Originality/value

This paper makes it easy for professionals working with the numerical methods with applications to ceramics and glasses to be up‐to‐date in an effective way.

Details

Engineering Computations, vol. 22 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 3 of 3