Search results

1 – 10 of 142
Article
Publication date: 10 April 2024

Qihua Ma, Qilin Li, Wenchao Wang and Meng Zhu

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the…

Abstract

Purpose

This study aims to achieve superior localization and mapping performance in point cloud degradation scenarios through the effective removal of dynamic obstacles. With the continuous development of various technologies for autonomous vehicles, the LIDAR-based Simultaneous localization and mapping (SLAM) system is becoming increasingly important. However, in SLAM systems, effectively addressing the challenges of point cloud degradation scenarios is essential for accurate localization and mapping, with dynamic obstacle removal being a key component.

Design/methodology/approach

This paper proposes a method that combines adaptive feature extraction and loop closure detection algorithms to address this challenge. In the SLAM system, the ground point cloud and non-ground point cloud are separated to reduce the impact of noise. And based on the cylindrical projection image of the point cloud, the intensity features are adaptively extracted, the degradation direction is determined by the degradation factor and the intensity features are matched with the map to correct the degraded pose. Moreover, through the difference in raster distribution of the point clouds before and after two frames in the loop process, the dynamic point clouds are identified and removed, and the map is updated.

Findings

Experimental results show that the method has good performance. The absolute displacement accuracy of the laser odometer is improved by 27.1%, the relative displacement accuracy is improved by 33.5% and the relative angle accuracy is improved by 23.8% after using the adaptive intensity feature extraction method. The position error is reduced by 30% after removing the dynamic target.

Originality/value

Compared with LiDAR odometry and mapping algorithm, the method has greater robustness and accuracy in mapping and localization.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 6 May 2024

Hansu Kim, Luke Crispo, Nicholas Galley, Si Mo Yeon, Yong Son and Il Yong Kim

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight…

Abstract

Purpose

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight topology-optimized designs with improved performance, but limited build volume restricts the printing of large components. The purpose of this paper is to design a lightweight aircraft seat leg structure using topology optimization (TO) and MAM with build volume restrictions, while satisfying structural airworthiness certification requirements.

Design/methodology/approach

TO was used to determine a lightweight conceptual design for the seat leg structure. The conceptual design was decomposed to meet the machine build volume, a detailed CAD assembly was designed and print orientation was selected for each component. Static and dynamic verification was performed, the design was updated to meet the structural requirements and a prototype was manufactured.

Findings

The final topology-optimized seat leg structure was decomposed into three parts, yielding a 57% reduction in the number of parts compared to a reference design. In addition, the design achieved an 8.5% mass reduction while satisfying structural requirements for airworthiness certification.

Originality/value

To the best of the authors’ knowledge, this study is the first paper to design an aircraft seat leg structure manufactured with MAM using a rigorous TO approach. The resultant design reduces mass and part count compared to a reference design and is verified with respect to real-world aircraft certification requirements.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 6 February 2024

Moslem Sheikhkhoshkar, Hind Bril El Haouzi, Alexis Aubry and Farook Hamzeh

In academics and industry, significant efforts have been made to lead planners and control teams in evaluating project performance and control. In this context, numerous control…

Abstract

Purpose

In academics and industry, significant efforts have been made to lead planners and control teams in evaluating project performance and control. In this context, numerous control metrics have been devised and put into practice, often with little emphasis on analyzing their underlying concepts. To cover this gap, this research aims to identify and analyze a holistic list of control metrics and their functionalities in the construction industry.

Design/methodology/approach

A multi-step analytical approach was conducted to achieve the study’s objectives. First, a holistic list of control metrics and their functionalities in the construction industry was identified. Second, a quantitative analysis based on social network analysis (SNA) was implemented to discover the most important functionalities.

Findings

The results revealed that the most important control metrics' functionalities (CMF) could differ depending on the type of metrics (lagging and leading) and levels of control. However, in general, the most significant functionalities include managing project progress and performance, evaluating the look-ahead level’s performance, measuring the reliability and stability of workflow, measuring the make-ready process, constraint management and measuring the quality of construction flow.

Originality/value

This research will assist the project team in getting a comprehensive sensemaking of planning and control systems and their functionalities to plan and control different dynamic aspects of the project.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 26 April 2024

Xue Xin, Yuepeng Jiao, Yunfeng Zhang, Ming Liang and Zhanyong Yao

This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic…

Abstract

Purpose

This study aims to ensure reliable analysis of dynamic responses in asphalt pavement structures. It investigates noise reduction and data mining techniques for pavement dynamic response signals.

Design/methodology/approach

The paper conducts time-frequency analysis on signals of pavement dynamic response initially. It also uses two common noise reduction methods, namely, low-pass filtering and wavelet decomposition reconstruction, to evaluate their effectiveness in reducing noise in these signals. Furthermore, as these signals are generated in response to vehicle loading, they contain a substantial amount of data and are prone to environmental interference, potentially resulting in outliers. Hence, it becomes crucial to extract dynamic strain response features (e.g. peaks and peak intervals) in real-time and efficiently.

Findings

The study introduces an improved density-based spatial clustering of applications with Noise (DBSCAN) algorithm for identifying outliers in denoised data. The results demonstrate that low-pass filtering is highly effective in reducing noise in pavement dynamic response signals within specified frequency ranges. The improved DBSCAN algorithm effectively identifies outliers in these signals through testing. Furthermore, the peak detection process, using the enhanced findpeaks function, consistently achieves excellent performance in identifying peak values, even when complex multi-axle heavy-duty truck strain signals are present.

Originality/value

The authors identified a suitable frequency domain range for low-pass filtering in asphalt road dynamic response signals, revealing minimal amplitude loss and effective strain information reflection between road layers. Furthermore, the authors introduced the DBSCAN-based anomaly data detection method and enhancements to the Matlab findpeaks function, enabling the detection of anomalies in road sensor data and automated peak identification.

Details

Smart and Resilient Transportation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2632-0487

Keywords

Article
Publication date: 30 April 2024

Revanth Kumar Guttena, Ferry Tema Atmaja and Cedric Hsi-Jui Wu

Pandemics are frequent events, and the impact of each pandemic makes a strong and long-term effect on companies and markets. Given the potential impact of the COVID-19 pandemic…

Abstract

Purpose

Pandemics are frequent events, and the impact of each pandemic makes a strong and long-term effect on companies and markets. Given the potential impact of the COVID-19 pandemic, it is important to investigate the crisis from a different perspective to know how companies have sustained growth in markets. The purpose of this paper is to understand how profit-oriented customer-centric companies (small, medium and large) have responded and adapted to COVID-19 crisis, using the complexity theory.

Design/methodology/approach

Drawing upon the complexity theory, a humble attempt is made to develop theoretical propositions by conceptualizing companies as complex adaptive systems. The paper examines companies from three dimensions (i.e. internal mechanism, environment and coevolution).

Findings

Companies self-organize, emerge into new states and become adaptive to the changing environment. Companies create knowledge to understand the dynamic anatomy and design survival and growth strategies during and post COVID-19 era. Complex adaptive systems perspective provides companies with insights to deal with complex issues raised due to COVID-19 pandemic. They can handle the impact of pandemic efficiently with complex adaptive systems by developing and implementing appropriate strategies post-COVID-19.

Originality/value

The study reveals how companies evolve and emerge into as complex adaptive systems to adapt themselves to the highly dynamic environment, which are uncertain, unpredictable, nonlinear and multifaceted, in the context of COVID-19. Implications for theory and practice of viewing companies as complex adaptive systems and coevolving structures in the COVID-19 context are discussed.

Details

Journal of Asia Business Studies, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1558-7894

Keywords

Article
Publication date: 5 April 2024

Lida Haghnegahdar, Sameehan S. Joshi, Rohith Yanambaka Venkata, Daniel A. Riley and Narendra B. Dahotre

Additive manufacturing also known as 3D printing is an evolving advanced manufacturing technology critical for the new era of complex machinery and operating systems…

20

Abstract

Purpose

Additive manufacturing also known as 3D printing is an evolving advanced manufacturing technology critical for the new era of complex machinery and operating systems. Manufacturing systems are increasingly faced with risk of attacks not only by traditional malicious actors such as hackers and cyber-criminals but also by some competitors and organizations engaged in corporate espionage. This paper aims to elaborate a plausible risk practice of designing and demonstrate a case study for the compromised-based malicious for polymer 3D printing system.

Design/methodology/approach

This study assumes conditions when a machine was compromised and evaluates the effect of post compromised attack by studying its effects on tensile dog bone specimens as the printed object. The designed algorithm removed predetermined specific number of layers from the tensile samples. The samples were visually identical in terms of external physical dimensions even after removal of the layers. Samples were examined nondestructively for density. Additionally, destructive uniaxial tensile tests were carried out on the modified samples and compared to the unmodified sample as a control for various mechanical properties. It is worth noting that the current approach was adapted for illustrating the impact of cyber altercations on properties of additively produced parts in a quantitative manner. It concurrently pointed towards the vulnerabilities of advanced manufacturing systems and a need for designing robust mitigation/defense mechanism against the cyber altercations.

Findings

Density, Young’s modulus and maximum strength steadily decreased with an increase in the number of missing layers, whereas a no clear trend was observed in the case of % elongation. Post tensile test observations of the sample cross-sections confirmed the successful removal of the layers from the samples by the designed method. As a result, the current work presented a cyber-attack model and its quantitative implications on the mechanical properties of 3D printed objects.

Originality/value

To the best of the authors’ knowledge, this is the original work from the team. It is currently not under consideration for publication in any other avenue. The paper provides quantitative approach of realizing impact of cyber intrusions on deteriorated performance of additively manufactured products. It also enlists important intrusion mechanisms relevant to additive manufacturing.

Details

Rapid Prototyping Journal, vol. 30 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 April 2024

Jitendra Gaur, Kumkum Bharti and Rahul Bajaj

Allocation of the marketing budget has become increasingly challenging due to the diverse channel exposure to customers. This study aims to enhance global marketing knowledge by…

Abstract

Purpose

Allocation of the marketing budget has become increasingly challenging due to the diverse channel exposure to customers. This study aims to enhance global marketing knowledge by introducing an ensemble attribution model to optimize marketing budget allocation for online marketing channels. As empirical research, this study demonstrates the supremacy of the ensemble model over standalone models.

Design/methodology/approach

The transactional data set for car insurance from an Indian insurance aggregator is used in this empirical study. The data set contains information from more than three million platform visitors. A robust ensemble model is created by combining results from two probabilistic models, namely, the Markov chain model and the Shapley value. These results are compared and validated with heuristic models. Also, the performances of online marketing channels and attribution models are evaluated based on the devices used (i.e. desktop vs mobile).

Findings

Channel importance charts for desktop and mobile devices are analyzed to understand the top contributing online marketing channels. Customer relationship management-emailers and Google cost per click a paid advertising is identified as the top two marketing channels for desktop and mobile channels. The research reveals that ensemble model accuracy is better than the standalone model, that is, the Markov chain model and the Shapley value.

Originality/value

To the best of the authors’ knowledge, the current research is the first of its kind to introduce ensemble modeling for solving attribution problems in online marketing. A comparison with heuristic models using different devices (desktop and mobile) offers insights into the results with heuristic models.

Details

Global Knowledge, Memory and Communication, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9342

Keywords

Open Access
Article
Publication date: 13 April 2023

Salim Ahmed, Khushboo Kumari and Durgeshwer Singh

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous…

2052

Abstract

Purpose

Petroleum hydrocarbons are naturally occurring flammable fossil fuels used as conventional energy sources. It has carcinogenic, mutagenic properties and is considered a hazardous pollutant. Soil contaminated with petroleum hydrocarbons adversely affects the properties of soil. This paper aim to remove pollutants from the environment is an urgent need of the hour to maintain the proper functioning of soil ecosystems.

Design/methodology/approach

The ability of micro-organisms to degrade petroleum hydrocarbons makes it possible to use these microorganisms to clean the environment from petroleum pollution. For preparing this review, research papers and review articles related to petroleum hydrocarbons degradation by micro-organisms were collected from journals and various search engines.

Findings

Various physical and chemical methods are used for remediation of petroleum hydrocarbons contaminants. However, these methods have several disadvantages. This paper will discuss a novel understanding of petroleum hydrocarbons degradation and how micro-organisms help in petroleum-contaminated soil restoration. Bioremediation is recognized as the most environment-friendly technique for remediation. The research studies demonstrated that bacterial consortium have high biodegradation rate of petroleum hydrocarbons ranging from 83% to 89%.

Social implications

Proper management of petroleum hydrocarbons pollutants from the environment is necessary because of their toxicity effects on human and environmental health.

Originality/value

This paper discussed novel mechanisms adopted by bacteria for biodegradation of petroleum hydrocarbons, aerobic and anaerobic biodegradation pathways, genes and enzymes involved in petroleum hydrocarbons biodegradation.

Details

Arab Gulf Journal of Scientific Research, vol. 42 no. 2
Type: Research Article
ISSN: 1985-9899

Keywords

Open Access
Article
Publication date: 9 October 2023

Andrea Ciacci and Lara Penco

The literature mainly concentrates on the relationships between externally oriented digital transformation (ExtDT), big data analytics capability (BDAC) and business model…

1751

Abstract

Purpose

The literature mainly concentrates on the relationships between externally oriented digital transformation (ExtDT), big data analytics capability (BDAC) and business model innovation (BMI) from an intra-organizational perspective. However, it is acknowledged that the external environment shapes the firm's strategy and affects innovation outcomes. Embracing an external environment perspective, the authors aim to fill this gap. The authors develop and test a moderated mediation model linking ExtDT to BMI. Drawing on the dynamic capabilities view, the authors' model posits that the effect of ExtDT on BMI is mediated by BDAC, while environmental hostility (EH) moderates these relationships.

Design/methodology/approach

The authors adopt a quantitative approach based on bootstrapped partial least square-path modeling (PLS-PM) to analyze a sample of 200 Italian data-driven SMEs.

Findings

The results highlight that ExtDT and BDAC positively affect BMI. The findings also indicate that ExtDT is an antecedent of BMI that is less disruptive than BDAC. The authors also obtain that ExtDT solely does not lead to BDAC. Interestingly, the effect of BDAC on BMI increases when EH moderates the relationship.

Originality/value

Analyzing the relationships between ExtDT, BDAC and BMI from an external environment perspective is an underexplored area of research. The authors contribute to this topic by evaluating how EH interacts with ExtDT and BDAC toward BMI.

Details

Journal of Small Business and Enterprise Development, vol. 31 no. 8
Type: Research Article
ISSN: 1462-6004

Keywords

Open Access
Article
Publication date: 30 April 2024

Maria Qvarfordt, Stefan Lagrosen and Lina Nilsson

The purpose of this mixed-methods study was to explore how medical secretaries experience digital transformation in a Swedish healthcare organisation, with a focus on workplace…

Abstract

Purpose

The purpose of this mixed-methods study was to explore how medical secretaries experience digital transformation in a Swedish healthcare organisation, with a focus on workplace climate and health.

Design/methodology/approach

Data were collected using a sequential exploratory mixed-methods design based on grounded theory, with qualitative data collection (a Quality Café and individual interviews) followed by quantitative data collection (a questionnaire).

Findings

Four categories with seven underlying factors were identified, emphasising the crucial need for effective organisation of digital transformation. This is vital due to the increased knowledge and skills in utilising technology. The evolving roles and responsibilities of medical secretaries in dynamic healthcare settings should be clearly defined and acknowledged, highlighting the importance of professionality. Ensuring proper training for medical secretaries and other occupations in emerging techniques is crucial, emphasising equal value and knowledge across each role. Associations were found between some factors and the health of medical secretaries.

Research limitations/implications

This study adds to the knowledge on digital transformation in healthcare by examining an important occupation. Most data were collected online, which may be a limitation of this study.

Practical implications

Several aspects of the medical secretaries’ experiences were identified. Knowledge of these is valuable for healthcare managers to make digital transformation more effective while avoiding excessive strain on medical secretaries.

Originality/value

Medical secretaries are expected to contribute to the digitalisation of healthcare. However, minimal research has been conducted on the role of medical secretaries in workplace digitalisation, focusing on workplace roles and its dynamics.

Details

Journal of Health Organization and Management, vol. 38 no. 9
Type: Research Article
ISSN: 1477-7266

Keywords

1 – 10 of 142