Search results

1 – 10 of over 2000
Article
Publication date: 16 May 2024

Mohaddese Geraeli and Emad Roghanian

The current research has developed a novel method to update the decisions regarding real-time data, named the dynamic adjusted real-time decision-making (DARDEM), for updating the…

Abstract

Purpose

The current research has developed a novel method to update the decisions regarding real-time data, named the dynamic adjusted real-time decision-making (DARDEM), for updating the decisions of a grocery supply chain that avoids both frequent modifications of decisions and apathy. The DARDEM method is an integration of unsupervised machine learning and mathematical modeling. This study aims to propose a dynamic proposed a dynamic distribution structure and developed a bi-objective mixed-integer linear program to make distribution decisions along with supplier selection in the supply chain.

Design/methodology/approach

The constantly changing environment of the grocery supply chains shows the necessity for dynamic distribution systems. In addition, new disruptive technologies of Industry 4.0, such as the Internet of Things, provide real-time data availability. Under such conditions, updating decisions has a crucial impact on the continued success of the supply chains. Optimization models have traditionally relied on estimated average input parameters, making it challenging to incorporate real-time data into their framework.

Findings

The proposed dynamic distribution and DARDEM method are studied in an e-grocery supply chain to minimize the total cost and complexity of the supply chain simultaneously. The proposed dynamic structure outperforms traditional distribution structures in a grocery supply chain, particularly when there is higher demand dispersion. The study showed that the DARDEM solution, the online solution, achieved an average difference of 1.54% compared to the offline solution, the optimal solution obtained in the presence of complete information. Moreover, the proposed method reduced the number of changes in downstream and upstream decisions by 30.32% and 40%, respectively, compared to the shortsighted approach.

Originality/value

Introducing a dynamic distribution structure in the supply chain that can effectively manage the challenges posed by real-time demand data, providing a balance between distribution stability and flexibility. The research develops a bi-objective mixed-integer linear program to make distribution decisions and supplier selections in the supply chain simultaneously. This model helps minimize the total cost and complexity of the e-grocery supply chain, providing valuable insights into decision-making processes. Developing a novel method to determine the status of the supply chain and online decision-making in the supply chain based on real-time data, enhancing the adaptability of the system to changing conditions. Implementing and analyzing the proposed MILP model and the developed real-time decision-making method in a case study in a grocery supply chain.

Details

Journal of Modelling in Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1746-5664

Keywords

Article
Publication date: 2 May 2024

Gerasimos G. Rigatos

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1…

Abstract

Purpose

To provide high torques needed to move a robot’s links, electric actuators are followed by a transmission system with a high transmission rate. For instance, gear ratios of 100:1 are often used in the joints of a robotic manipulator. This results into an actuator with large mechanical impedance (also known as nonback-drivable actuator). This in turn generates high contact forces when collision of the robotic mechanism occur and can cause humans’ injury. Another disadvantage of electric actuators is that they can exhibit overheating when constant torques have to be provided. Comparing to electric actuators, pneumatic actuators have promising properties for robotic applications, due to their low weight, simple mechanical design, low cost and good power-to-weight ratio. Electropneumatically actuated robots usually have better friction properties. Moreover, because of low mechanical impedance, pneumatic robots can provide moderate interaction forces which is important for robotic surgery and rehabilitation tasks. Pneumatic actuators are also well suited for exoskeleton robots. Actuation in exoskeletons should have a fast and accurate response. While electric motors come against high mechanical impedance and the risk of causing injuries, pneumatic actuators exhibit forces and torques which stay within moderate variation ranges. Besides, unlike direct current electric motors, pneumatic actuators have an improved weight-to-power ratio and avoid overheating problems.

Design/methodology/approach

The aim of this paper is to analyze a nonlinear optimal control method for electropneumatically actuated robots. A two-link robotic exoskeleton with electropneumatic actuators is considered as a case study. The associated nonlinear and multivariable state-space model is formulated and its differential flatness properties are proven. The dynamic model of the electropneumatic robot is linearized at each sampling instance with the use of first-order Taylor series expansion and through the computation of the associated Jacobian matrices. Within each sampling period, the time-varying linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. An H-infinity controller is designed for the linearized model of the robot aiming at solving the related optimal control problem under model uncertainties and external perturbations. An algebraic Riccati equation is solved at each time-step of the control method to obtain the stabilizing feedback gains of the H-infinity controller. Through Lyapunov stability analysis, it is proven that the robot’s control scheme satisfies the H-infinity tracking performance conditions which indicate the robustness properties of the control method. Moreover, global asymptotic stability is proven for the control loop. The method achieves fast convergence of the robot’s state variables to the associated reference trajectories, and despite strong nonlinearities in the robot’s dynamics, it keeps moderate the variations of the control inputs.

Findings

In this paper, a novel solution has been proposed for the nonlinear optimal control problem of robotic exoskeletons with electropneumatic actuators. As a case study, the dynamic model of a two-link lower-limb robotic exoskeleton with electropneumatic actuators has been considered. The dynamic model of this robotic system undergoes first approximate linearization at each iteration of the control algorithm around a temporary operating point. Within each sampling period, this linearization point is defined by the present value of the robot’s state vector and by the last sampled value of the control inputs vector. The linearization process relies on first-order Taylor series expansion and on the computation of the associated Jacobian matrices. The modeling error which is due to the truncation of higher-order terms from the Taylor series is considered to be a perturbation which is asymptotically compensated by the robustness of the control algorithm. To stabilize the dynamics of the electropneumatically actuated robot and to achieve precise tracking of reference setpoints, an H-infinity (optimal) feedback controller is designed. Actually, the proposed H-infinity controller for the model of the two-link electropneumatically actuated exoskeleton achieves the solution of the associated optimal control problem under model uncertainty and external disturbances. This controller implements a min-max differential game taking place between: (i) the control inputs which try to minimize a cost function which comprises a quadratic term of the state vector’s tracking error and (ii) the model uncertainty and perturbation inputs which try to maximize this cost function. To select the stabilizing feedback gains of this H-infinity controller, an algebraic Riccati equation is being repetitively solved at each time-step of the control method. The global stability properties of the H-infinity control scheme are proven through Lyapunov analysis.

Research limitations/implications

Pneumatic actuators are characterized by high nonlinearities which are due to air compressibility, thermodynamics and valves behavior and thus pneumatic robots require elaborated nonlinear control schemes to ensure their fast and precise positioning. Among the control methods which have been applied to pneumatic robots, one can distinguish differential geometric approaches (Lie algebra-based control, differential flatness theory-based control, nonlinear model predictive control [NMPC], sliding-mode control, backstepping control and multiple models-based fuzzy control). Treating nonlinearities and fault tolerance issues in the control problem of robotic manipulators with electropneumatic actuators has been a nontrivial task.

Practical implications

The novelty of the proposed control method is outlined as follows: preceding results on the use of H-infinity control to nonlinear dynamical systems were limited to the case of affine-in-the-input systems with drift-only dynamics. These results considered that the control inputs gain matrix is not dependent on the values of the system’s state vector. Moreover, in these approaches the linearization was performed around points of the desirable trajectory, whereas in the present paper’s control method the linearization points are related with the value of the state vector at each sampling instance as well as with the last sampled value of the control inputs vector. The Riccati equation which has been proposed for computing the feedback gains of the controller is novel, so is the presented global stability proof through Lyapunov analysis. This paper’s scientific contribution is summarized as follows: (i) the presented nonlinear optimal control method has improved or equally satisfactory performance when compared against other nonlinear control schemes that one can consider for the dynamic model of robots with electropneumatic actuators (such as Lie algebra-based control, differential flatness theory-based control, nonlinear model-based predictive control, sliding-mode control and backstepping control), (ii) it achieves fast and accurate tracking of all reference setpoints, (iii) despite strong nonlinearities in the dynamic model of the robot, it keeps moderate the variations of the control inputs and (iv) unlike the aforementioned alternative control approaches, this paper’s method is the only one that achieves solution of the optimal control problem for electropneumatic robots.

Social implications

The use of electropneumatic actuation in robots exhibits certain advantages. These can be the improved weight-to-power ratio, the lower mechanical impedance and the avoidance of overheating. At the same time, precise positioning and accurate execution of tasks by electropneumatic robots requires the application of elaborated nonlinear control methods. In this paper, a new nonlinear optimal control method has been developed for electropneumatically actuated robots and has been specifically applied to the dynamic model of a two-link robotic exoskeleton. The benefit from using this paper’s results in industrial and biomedical applications is apparent.

Originality/value

A comparison of the proposed nonlinear optimal (H-infinity) control method against other linear and nonlinear control schemes for electropneumatically actuated robots shows the following: (1) Unlike global linearization-based control approaches, such as Lie algebra-based control and differential flatness theory-based control, the optimal control approach does not rely on complicated transformations (diffeomorphisms) of the system’s state variables. Besides, the computed control inputs are applied directly on the initial nonlinear model of the electropneumatic robot and not on its linearized equivalent. The inverse transformations which are met in global linearization-based control are avoided and consequently one does not come against the related singularity problems. (2) Unlike model predictive control (MPC) and NMPC, the proposed control method is of proven global stability. It is known that MPC is a linear control approach that if applied to the nonlinear dynamics of the electropneumatic robot, the stability of the control loop will be lost. Besides, in NMPC the convergence of its iterative search for an optimum depends on initialization and parameter values selection and consequently the global stability of this control method cannot be always assured. (3) Unlike sliding-mode control and backstepping control, the proposed optimal control method does not require the state-space description of the system to be found in a specific form. About sliding-mode control, it is known that when the controlled system is not found in the input-output linearized form the definition of the sliding surface can be an intuitive procedure. About backstepping control, it is known that it cannot be directly applied to a dynamical system if the related state-space model is not found in the triangular (backstepping integral) form. (4) Unlike PID control, the proposed nonlinear optimal control method is of proven global stability, the selection of the controller’s parameters does not rely on a heuristic tuning procedure, and the stability of the control loop is assured in the case of changes of operating points. (5) Unlike multiple local models-based control, the nonlinear optimal control method uses only one linearization point and needs the solution of only one Riccati equation so as to compute the stabilizing feedback gains of the controller. Consequently, in terms of computation load the proposed control method for the electropneumatic actuator’s dynamics is much more efficient.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 29 April 2024

Amin Mojoodi, Saeed Jalalian and Tafazal Kumail

This research aims to determine the ideal fare for various aircraft itineraries by modeling prices using a neural network method. Dynamic pricing has been studied from the…

Abstract

Purpose

This research aims to determine the ideal fare for various aircraft itineraries by modeling prices using a neural network method. Dynamic pricing has been studied from the airline’s point of view, with a focus on demand forecasting and price differentiation. Early demand forecasting on a specific route can assist an airline in strategically planning flights and determining optimal pricing strategies.

Design/methodology/approach

A feedforward neural network was employed in the current study. Two hidden layers, consisting of 18 and 12 neurons, were incorporated to enhance the network’s capabilities. The activation function employed for these layers was tanh. Additionally, it was considered that the output layer’s functions were linear. The neural network inputs considered in this study were flight path, month of flight, flight date (week/day), flight time, aircraft type (Boeing, Airbus, other), and flight class (economy, business). The neural network output, on the other hand, was the ticket price. The dataset comprises 16,585 records, specifically flight data for Iranian airlines for 2022.

Findings

The findings indicate that the model achieved a high level of accuracy in approximating the actual data. Additionally, it demonstrated the ability to predict the optimal ticket price for various flight routes with minimal error.

Practical implications

Based on the significant alignment observed between the actual data and the tested data utilizing the algorithmic model, airlines can proactively anticipate ticket prices across all routes, optimizing the revenue generated by each flight. The neural network algorithm utilized in this study offers a valuable opportunity for companies to enhance their decision-making processes. By leveraging the algorithm’s features, companies can analyze past data effectively and predict future prices. This enables them to make informed and timely decisions based on reliable information.

Originality/value

The present study represents a pioneering research endeavor that investigates using a neural network algorithm to predict the most suitable pricing for various flight routes. This study aims to provide valuable insights into dynamic pricing for marketing researchers and practitioners.

Details

Journal of Hospitality and Tourism Insights, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9792

Keywords

Open Access
Article
Publication date: 9 October 2023

Andrea Ciacci and Lara Penco

The literature mainly concentrates on the relationships between externally oriented digital transformation (ExtDT), big data analytics capability (BDAC) and business model…

1846

Abstract

Purpose

The literature mainly concentrates on the relationships between externally oriented digital transformation (ExtDT), big data analytics capability (BDAC) and business model innovation (BMI) from an intra-organizational perspective. However, it is acknowledged that the external environment shapes the firm's strategy and affects innovation outcomes. Embracing an external environment perspective, the authors aim to fill this gap. The authors develop and test a moderated mediation model linking ExtDT to BMI. Drawing on the dynamic capabilities view, the authors' model posits that the effect of ExtDT on BMI is mediated by BDAC, while environmental hostility (EH) moderates these relationships.

Design/methodology/approach

The authors adopt a quantitative approach based on bootstrapped partial least square-path modeling (PLS-PM) to analyze a sample of 200 Italian data-driven SMEs.

Findings

The results highlight that ExtDT and BDAC positively affect BMI. The findings also indicate that ExtDT is an antecedent of BMI that is less disruptive than BDAC. The authors also obtain that ExtDT solely does not lead to BDAC. Interestingly, the effect of BDAC on BMI increases when EH moderates the relationship.

Originality/value

Analyzing the relationships between ExtDT, BDAC and BMI from an external environment perspective is an underexplored area of research. The authors contribute to this topic by evaluating how EH interacts with ExtDT and BDAC toward BMI.

Details

Journal of Small Business and Enterprise Development, vol. 31 no. 8
Type: Research Article
ISSN: 1462-6004

Keywords

Article
Publication date: 23 September 2022

Rania Zghal, Amel Melki and Ahmed Ghorbel

This present work aims at looking into whether or not introducing commodities in international equity portfolios helps reduce the market risk and if hedging is carried out with…

Abstract

Purpose

This present work aims at looking into whether or not introducing commodities in international equity portfolios helps reduce the market risk and if hedging is carried out with the same effectiveness across different regional stock markets.

Design/methodology/approach

The authors determine the optimal hedge ratios and hedging effectiveness of a number of commodity-hedged emerging and developed equity markets, using three versions of MGARCH model: DCC, ADCC and GO-GARCH. The authors also use a rolling window estimation procedure for the purpose of constructing out-of-sample one-step-ahead forecasts of dynamic conditional correlations and optimal hedge ratios.

Findings

Empirical results evince that commodities significantly display effective risk-reducing hedge instruments in short and long runs. The main finding is that commodities do not seem to hedge regional stock markets in the same way. They tend to provide evidence of a rather effective hedging regarding mainly the East European and Latin American stock markets.

Originality/value

The authors study whether commodities can hedge stock markets at regional context and if hedging effectiveness differ from one region to another.

Details

International Journal of Emerging Markets, vol. 19 no. 5
Type: Research Article
ISSN: 1746-8809

Keywords

Article
Publication date: 20 March 2024

Evelyn Lopez, Jose A. Flecha-Ortiz, Maria Santos-Corrada and Virgin Dones

The COVID-19 pandemic has significantly affected service small- and medium-sized enterprises (SMEs), increasing the importance of understanding how these businesses can become…

Abstract

Purpose

The COVID-19 pandemic has significantly affected service small- and medium-sized enterprises (SMEs), increasing the importance of understanding how these businesses can become more resilient and how service innovation can be an effective strategy to increase their adaptive capacity and survival. This study aims to examine the role of dynamic capabilities in service innovation as a factor explaining the resilience of SMEs in Puerto Rico and the Dominican Republic during the COVID-19 crisis and its impact on service innovation. Additionally, the authors assess whether service innovation has a significant impact on value cocreation in these businesses.

Design/methodology/approach

This study used a quantitative method by surveying 118 SME owners in Puerto Rico and the Dominican Republic. The data were analyzed using partial least-squares structural equation modeling.

Findings

The results reflect important theoretical contributions by analyzing resilience from an innovation perspective instead of a retrospective approach, which is an area that has not been analyzed in the literature. Additionally, theoretical contributions to marketing services in SMEs are discussed, which is an underresearched topic. The results advance by discussing the role of service innovation through the reconfiguration of resources and how this can be an effective strategy to increase value cocreation with customers during crises.

Originality/value

This study is original in that it analyzes resilience from the perspective of innovation, and not from a retrospective approach. It offers a vision in response to the need for studies that provide a clearer conceptualization of resilience in small businesses. This highlights the importance of considering regional differences and service innovation as effective strategies to enhance resilience and value cocreation with customers.

Details

Journal of Services Marketing, vol. 38 no. 4
Type: Research Article
ISSN: 0887-6045

Keywords

Article
Publication date: 26 April 2024

Yansen Wu, Dongsheng Wen, Anmin Zhao, Haobo Liu and Ke Li

This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and…

Abstract

Purpose

This study aims to study the thermal identification issue by harvesting both solar energy and atmospheric thermal updraft for a solar-powered unmanned aerial vehicle (SUAV) and its electric energy performance under continuous soaring conditions.

Design/methodology/approach

The authors develop a specific dynamic model for SUAVs in both soaring and cruise modes. The support vector machine regression (SVMR) is adopted to estimate the thermal position, and it is combined with feedback control to implement the SUAV soaring in the updraft. Then, the optimal path model is built based on the graph theory considering the existence of several thermals distributed in the environment. The procedure is proposed to estimate the electricity cost of SUAV during flight as well as soaring, and making use of dynamic programming to maximize electric energy.

Findings

The simulation results present the integrated control method could allow SUAV to soar with the updraft. In addition, the proposed approach allows the SUAV to fly to the destination using distributed thermals while reducing the electric energy use.

Originality/value

Two simplified dynamic models are constructed for simulation considering there are different flight mode. Besides, the data-driven-based SVMR method is proposed to support SUAV soaring. Furthermore, instead of using length, the energy cost coefficient in optimization problem is set as electric power, which is more suitable for SUAV because its advantage is to transfer the three-dimensional path planning problem into the two-dimensional.

Details

Aircraft Engineering and Aerospace Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 May 2024

Hansu Kim, Luke Crispo, Nicholas Galley, Si Mo Yeon, Yong Son and Il Yong Kim

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight…

Abstract

Purpose

The lightweight design of aircraft seats can significantly improve fuel efficiency and reduce greenhouse gas emissions. Metal additive manufacturing (MAM) can produce lightweight topology-optimized designs with improved performance, but limited build volume restricts the printing of large components. The purpose of this paper is to design a lightweight aircraft seat leg structure using topology optimization (TO) and MAM with build volume restrictions, while satisfying structural airworthiness certification requirements.

Design/methodology/approach

TO was used to determine a lightweight conceptual design for the seat leg structure. The conceptual design was decomposed to meet the machine build volume, a detailed CAD assembly was designed and print orientation was selected for each component. Static and dynamic verification was performed, the design was updated to meet the structural requirements and a prototype was manufactured.

Findings

The final topology-optimized seat leg structure was decomposed into three parts, yielding a 57% reduction in the number of parts compared to a reference design. In addition, the design achieved an 8.5% mass reduction while satisfying structural requirements for airworthiness certification.

Originality/value

To the best of the authors’ knowledge, this study is the first paper to design an aircraft seat leg structure manufactured with MAM using a rigorous TO approach. The resultant design reduces mass and part count compared to a reference design and is verified with respect to real-world aircraft certification requirements.

Article
Publication date: 12 January 2024

Wei Xiao, Zhongtao Fu, Shixian Wang and Xubing Chen

Because of the key role of joint torque in industrial robots (IRs) motion performance control and energy consumption calculation and efficiency optimization, the purpose of this…

Abstract

Purpose

Because of the key role of joint torque in industrial robots (IRs) motion performance control and energy consumption calculation and efficiency optimization, the purpose of this paper is to propose a deep learning torque prediction method based on long short-term memory (LSTM) recurrent neural networks optimized by particle swarm optimization (PSO), which can accurately predict the the joint torque.

Design/methodology/approach

The proposed model optimized the LSTM with PSO algorithm to accurately predict the IRs joint torque. The authors design an excitation trajectory for ABB 1600–10/145 experimental robot and collect its relative dynamic data. The LSTM model was trained with the experimental data, and PSO was used to find optimal number of LSTM nodes and learning rate, then a torque prediction model is established based on PSO-LSTM deep learning method. The novel model is used to predict the robot’s six joint torque and the root mean error squares of the predicted data together with least squares (LS) method were comparably studied.

Findings

The predicted joint torque value by PSO-LSTM deep learning approach is highly overlapped with those from real experiment robot, and the error is quite small. The average square error between the predicted joint torque data and experiment data is 2.31 N.m smaller than that with the LS method. The accuracy of the novel PSO-LSTM learning method for joint torque prediction of IR is proved.

Originality/value

PSO and LSTM model are deeply integrated for the first time to predict the joint torque of IR and the prediction accuracy is verified.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 22 August 2023

Shobhana Sikhawal

This study examines the non-linear impact of financial development on income inequality and analyses the mediators through which financial development affects income inequality.

Abstract

Purpose

This study examines the non-linear impact of financial development on income inequality and analyses the mediators through which financial development affects income inequality.

Design/methodology/approach

The study uses a dynamic panel threshold method with an endogeneous threshold variable on a comprehensive sample of 85 countries over the period of 1996-2015.

Findings

The author finds that financial development activities increase income inequality in developed countries. However, financial development promotes income equality in developing countries. Further, the study finds that education and institutional quality are the channels through which financial development has non-linear impacts on income inequality.

Originality/value

The study explores relatively new method to examine the nonlinear impact of financial development and also considers new dataset for the main explanatory variable.

Details

Journal of Economic Studies, vol. 51 no. 3
Type: Research Article
ISSN: 0144-3585

Keywords

1 – 10 of over 2000