Search results

1 – 10 of 19
Article
Publication date: 18 April 2024

Li Li, Tong Huang, Chujia Pan, J.F. Pan and Wenbin Su

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the…

Abstract

Purpose

The purpose of this paper aims to investigate the adaptive impedance control and its optimized PSO algorithm for force tracking of a dual-arm cooperative robot. Because the dual-arm robot is directly in contact with external environment, controlling the mutual force between robot and external environment is of great importance. Besides, a high compliance of the robot should be guaranteed.

Design/methodology/approach

An impedance control based on Particle Swarm Optimization (PSO) algorithm is designed to track the mutual force and achieve compliance control of the robot end.

Findings

The experimental results show that the impedance control coefficients can be automatically tuned converged by PSO algorithm.

Originality/value

The system can reach a steady state within 0.03 s with overshoot convergence, and the force fluctuation range at the steady state decreases to about ±0.08 N even under the force mutation condition.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 April 2023

Xinyang Fan, Xin Shu, Baoxu Tu, Changyuan Liu, Fenglei Ni and Zainan Jiang

In the current teleoperation system of humanoid robots, the control between arms and the control between the waist and arms are individual and lack coordinated motion. This paper…

Abstract

Purpose

In the current teleoperation system of humanoid robots, the control between arms and the control between the waist and arms are individual and lack coordinated motion. This paper aims to solve the above problem and proposes a teleoperation control approach for a humanoid robot based on waist–arm coordination (WAC).

Design/methodology/approach

The teleoperation approach based on WAC comprises dual-arm coordination (DAC) and WAC. The DAC method realizes the coordinated motion of both arms through one hand by establishing a mapping relationship between a single hand controller and the manipulated object; the WAC method realizes the coordinated motion of both arms and waist by calculating the inverse kinematic input of robotic arms based on the desired velocity of the waist and the end of both arms. An integrated teleoperation control framework provides interfaces for the above methods, and users can switch control modes online to adapt to different tasks.

Findings

After conducting experiments on the dual-arm humanoid robot through the teleoperation control framework, it was found that the DAC method can save 27.2% of the operation time and reduce 99.9% of the posture change of the manipulated object compared with the commonly used individual control. The WAC method can accomplish a task that cannot be done by individual control. The experiments proved the improvement of both methods in terms of operation efficiency, operation stability and operation capability compared with individual control.

Originality/value

The DAC method better maintains the constraints of both arms and the manipulated object. The WAC method better maintains the constraints of the manipulated object itself. Meanwhile, the teleoperation framework integrates the proposed methods and enriches the teleoperation modes and control means.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 February 2024

Yanghong Li, Yahao Wang, Yutao Chen, X.W. Rong, Yuliang Zhao, Shaolei Wu and Erbao Dong

The current difficulties of distribution network working robots are mainly in the performance and operation mode. On the one hand, high-altitude power operation tasks require high…

Abstract

Purpose

The current difficulties of distribution network working robots are mainly in the performance and operation mode. On the one hand, high-altitude power operation tasks require high load-carrying capacity and dexterity of the robot; on the other hand, the fully autonomous mode is uncontrollable and the teleoperation mode has a high failure rate. Therefore, this study aims to design a distribution network operation robot named Sky-Worker to solve the above two problems.

Design/methodology/approach

The heterogeneous arms of Sky-Worker are driven by hydraulics and electric motors to solve the contradiction between high load-carrying capacity and high flexibility. A human–robot collaborative shared control architecture is built to realize real-time human intervention during autonomous operation, and control weights are dynamically assigned based on energy optimization.

Findings

Simulations and tests show that Sky-Worker has good dexterity while having a high load capacity. Based on Sky-Worker, multiuser tests and practical application experiments show that the designed shared-control mode effectively improves the success rate and efficiency of operations compared with other current operation modes.

Practical implications

The designed heterogeneous dual-arm distribution robot aims to better serve distribution line operation tasks.

Originality/value

For the first time, the integration of hydraulic and motor drives into a distribution network operation robot has achieved better overall performance. A human–robot cooperative shared control framework is proposed for remote live-line working robots, which provides better operation results than other current operation modes.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 14 March 2023

Caixia Chao, Xin Mei, Yongle Wei and Lijin Fang

This paper aims to design a walking-clamp mechanism for the inspection robot of transmission line. The focus for this design is on climbing ability and obstacle-crossing ability…

Abstract

Purpose

This paper aims to design a walking-clamp mechanism for the inspection robot of transmission line. The focus for this design is on climbing ability and obstacle-crossing ability with a goal to create a novel walking-clamp mechanism that can clamp not only the line but also the obstacle.

Design/methodology/approach

A novel clamping jaw used in the walking-clamp mechanism is proposed. The clamping wheel is mounted on the lower end of clamping jaw to reduce the friction between the clamping jaw and the line, and the top end of clamping jaw is designed as a hook structure to clamp the obstacle. The working principle and force states of the walking-clamp mechanism clamping the line and obstacle are analyzed, and the simulation and prototype experiments are carried out.

Findings

The experimental results show that this mechanism can clamp the obstacle steadily, and the clamping forces of the front and back pairs of clamping jaws are almost equal during robot walking along the catenary-shaped line. It is in agreement with the theoretical analysis, and it demonstrates that this mechanism can meet the working requirements of inspection robot.

Practical implications

This novel mechanism can be used for inspection robot of transmission line, and it is beneficial for robot to complete long-distance inspection works.

Social implications

It stands to reduce costs related to inspection and improve the inspection efficiency.

Originality/value

Innovative features include its structure, working principle and force states.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 20 October 2023

Yi Wu, Xiaohui Jia, Tiejun Li, Chao Xu and Jinyue Liu

This paper aims to use redundant manipulators to solve the challenge of collision avoidance in construction operations such as welding and painting.

Abstract

Purpose

This paper aims to use redundant manipulators to solve the challenge of collision avoidance in construction operations such as welding and painting.

Design/methodology/approach

In this paper, a null-space-based task-priority adjustment approach is developed to avoid collisions. The method establishes the relative position of the obstacle and the robot arm by defining the “link space,” and then the priority of the collision avoidance task and the end-effector task is adjusted according to the relative position by introducing the null space task conversion factors.

Findings

Numerical simulations demonstrate that the proposed method can realize collision-free maneuvers for redundant manipulators and guarantee the tracking precision of the end-effector task. The experimental results show that the method can avoid dynamic obstacles in redundant manipulator welding tasks.

Originality/value

A new formula for task priority adjustment for collision avoidance of redundant manipulators is proposed, and the original task tracking accuracy is guaranteed under the premise of safety.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 August 2023

Robert Bogue

The purpose of this paper is to provide an insight into the present-day state of bin picking by considering research, technology, products and applications.

Abstract

Purpose

The purpose of this paper is to provide an insight into the present-day state of bin picking by considering research, technology, products and applications.

Design/methodology/approach

Following a short introduction, this first provides examples of recent bin picking research. It then discusses a selection of commercial product developments and applications. Finally, brief conclusions are drawn.

Findings

Bin picking has the potential to eliminate repetitive, manual part handling practices in many sectors of the manufacturing and logistics industries. Systems combine robotic gripping and manipulation with machine vision and specialist software and tend to be complex to install and commission. They are produced by robot manufacturers, system integrators, software developers and machine vision specialists and all are constantly developing and improving the technology. These developments are supported by a strong academic research effort, much involving artificial intelligence methods, and while the technology is evolving rapidly, it is yet to reach the point where deployments are routine and widespread.

Originality/value

This provides a timely review of recent bin picking research and commercial developments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 15 April 2024

Xiaona Wang, Jiahao Chen and Hong Qiao

Limited by the types of sensors, the state information available for musculoskeletal robots with highly redundant, nonlinear muscles is often incomplete, which makes the control…

Abstract

Purpose

Limited by the types of sensors, the state information available for musculoskeletal robots with highly redundant, nonlinear muscles is often incomplete, which makes the control face a bottleneck problem. The aim of this paper is to design a method to improve the motion performance of musculoskeletal robots in partially observable scenarios, and to leverage the ontology knowledge to enhance the algorithm’s adaptability to musculoskeletal robots that have undergone changes.

Design/methodology/approach

A memory and attention-based reinforcement learning method is proposed for musculoskeletal robots with prior knowledge of muscle synergies. First, to deal with partially observed states available to musculoskeletal robots, a memory and attention-based network architecture is proposed for inferring more sufficient and intrinsic states. Second, inspired by muscle synergy hypothesis in neuroscience, prior knowledge of a musculoskeletal robot’s muscle synergies is embedded in network structure and reward shaping.

Findings

Based on systematic validation, it is found that the proposed method demonstrates superiority over the traditional twin delayed deep deterministic policy gradients (TD3) algorithm. A musculoskeletal robot with highly redundant, nonlinear muscles is adopted to implement goal-directed tasks. In the case of 21-dimensional states, the learning efficiency and accuracy are significantly improved compared with the traditional TD3 algorithm; in the case of 13-dimensional states without velocities and information from the end effector, the traditional TD3 is unable to complete the reaching tasks, while the proposed method breaks through this bottleneck problem.

Originality/value

In this paper, a novel memory and attention-based reinforcement learning method with prior knowledge of muscle synergies is proposed for musculoskeletal robots to deal with partially observable scenarios. Compared with the existing methods, the proposed method effectively improves the performance. Furthermore, this paper promotes the fusion of neuroscience and robotics.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 25 April 2024

Long Zhao, Xiaoye Liu, Linxiang Li, Run Guo and Yang Chen

This study aims to realize efficient, fast and safe robot search task, the belief criteria decision-making approach is proposed to solve the object search task with an uncertain…

Abstract

Purpose

This study aims to realize efficient, fast and safe robot search task, the belief criteria decision-making approach is proposed to solve the object search task with an uncertain location.

Design/methodology/approach

The study formulates the robot search task as a partially observable Markov decision process, uses the semantic information to evaluate the belief state and designs the belief criteria decision-making approach. A cost function considering a trade-off among belief state, path length and movement effort is modelled to select the next best location in path planning.

Findings

The semantic information is successfully modelled and propagated, which can represent the belief of finding object. The belief criteria decision-making (BCDM) approach is evaluated in both Gazebo simulation platform and physical experiments. Compared to greedy, uniform and random methods, the performance index of path length and execution time is superior by BCDM approach.

Originality/value

The prior knowledge of robot working environment, especially semantic information, can be used for path planning to achieve efficient task execution in path length and execution time. The modelling and updating of environment information can lead a promising research topic to realize a more intelligent decision-making method for object search task.

Details

Robotic Intelligence and Automation, vol. 44 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 6 March 2024

Ruoxing Wang, Shoukun Wang, Junfeng Xue, Zhihua Chen and Jinge Si

This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged…

Abstract

Purpose

This paper aims to investigate an autonomous obstacle-surmounting method based on a hybrid gait for the problem of crossing low-height obstacles autonomously by a six wheel-legged robot. The autonomy of obstacle-surmounting is reflected in obstacle recognition based on multi-frame point cloud fusion.

Design/methodology/approach

In this paper, first, for the problem that the lidar on the robot cannot scan the point cloud of low-height obstacles, the lidar is driven to rotate by a 2D turntable to obtain the point cloud of low-height obstacles under the robot. Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping algorithm, fast ground segmentation algorithm and Euclidean clustering algorithm are used to recognize the point cloud of low-height obstacles and obtain low-height obstacle in-formation. Then, combined with the structural characteristics of the robot, the obstacle-surmounting action planning is carried out for two types of obstacle scenes. A segmented approach is used for action planning. Gait units are designed to describe each segment of the action. A gait matrix is used to describe the overall action. The paper also analyzes the stability and surmounting capability of the robot’s key pose and determines the robot’s surmounting capability and the value scheme of the surmounting control variables.

Findings

The experimental verification is carried out on the robot laboratory platform (BIT-6NAZA). The obstacle recognition method can accurately detect low-height obstacles. The robot can maintain a smooth posture to cross low-height obstacles, which verifies the feasibility of the adaptive obstacle-surmounting method.

Originality/value

The study can provide the theory and engineering foundation for the environmental perception of the unmanned platform. It provides environmental information to support follow-up work, for example, on the planning of obstacles and obstacles.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 3 July 2023

Kento Nakatsuru, Weiwei Wan and Kensuke Harada

This paper aims to study using a mobile manipulator with a collaborative robotic arm component to manipulate objects beyond the robot’s maximum payload.

Abstract

Purpose

This paper aims to study using a mobile manipulator with a collaborative robotic arm component to manipulate objects beyond the robot’s maximum payload.

Design/methodology/approach

This paper proposes a single-short probabilistic roadmap-based method to plan and optimize manipulation motion with environment support. The method uses an expanded object mesh model to examine contact and randomly explores object motion while keeping contact and securing affordable grasping force. It generates robotic motion trajectories after obtaining object motion using an optimization-based algorithm. With the proposed method’s help, the authors plan contact-rich manipulation without particularly analyzing an object’s contact modes and their transitions. The planner and optimizer determine them automatically.

Findings

The authors conducted experiments and analyses using simulations and real-world executions to examine the method’s performance. The method successfully found manipulation motion that met contact, force and kinematic constraints. It allowed a mobile manipulator to move heavy objects while leveraging supporting forces from environmental obstacles.

Originality/value

This paper presents an automatic approach for solving contact-rich heavy object manipulation problems. Unlike previous methods, the new approach does not need to explicitly analyze contact states and build contact transition graphs, thus providing a new view for robotic grasp-less manipulation, nonprehensile manipulation, manipulation with contact, etc.

Details

Robotic Intelligence and Automation, vol. 43 no. 4
Type: Research Article
ISSN: 2754-6969

Keywords

1 – 10 of 19