Search results

1 – 1 of 1
Article
Publication date: 14 March 2023

Caixia Chao, Xin Mei, Yongle Wei and Lijin Fang

This paper aims to design a walking-clamp mechanism for the inspection robot of transmission line. The focus for this design is on climbing ability and obstacle-crossing ability…

Abstract

Purpose

This paper aims to design a walking-clamp mechanism for the inspection robot of transmission line. The focus for this design is on climbing ability and obstacle-crossing ability with a goal to create a novel walking-clamp mechanism that can clamp not only the line but also the obstacle.

Design/methodology/approach

A novel clamping jaw used in the walking-clamp mechanism is proposed. The clamping wheel is mounted on the lower end of clamping jaw to reduce the friction between the clamping jaw and the line, and the top end of clamping jaw is designed as a hook structure to clamp the obstacle. The working principle and force states of the walking-clamp mechanism clamping the line and obstacle are analyzed, and the simulation and prototype experiments are carried out.

Findings

The experimental results show that this mechanism can clamp the obstacle steadily, and the clamping forces of the front and back pairs of clamping jaws are almost equal during robot walking along the catenary-shaped line. It is in agreement with the theoretical analysis, and it demonstrates that this mechanism can meet the working requirements of inspection robot.

Practical implications

This novel mechanism can be used for inspection robot of transmission line, and it is beneficial for robot to complete long-distance inspection works.

Social implications

It stands to reduce costs related to inspection and improve the inspection efficiency.

Originality/value

Innovative features include its structure, working principle and force states.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 1 of 1