Search results

1 – 10 of over 1000
Article
Publication date: 15 March 2023

Shufeng Tang, Renjie Huang, Guoqing Zhao and Guoqing Wang

The purpose of this paper is that the modular mobile robots reformed the multimachine joint mode to achieve obstacle-crossing, climbing and other multifunctional inspection in…

Abstract

Purpose

The purpose of this paper is that the modular mobile robots reformed the multimachine joint mode to achieve obstacle-crossing, climbing and other multifunctional inspection in unstructured environment under the connection of the cone–hole docking mechanism.

Design/methodology/approach

An arc-shaped docking cone head with a posture-maintaining spring and two arc-shaped connecting rods that formed a ring round hole were designed to achieve large tolerance docking. Before active locking, the coordination between structures was used to achieve passive locking, which mitigated the docking impact of modular robots in unstructured environment. Using the locking ring composed of the two arc-shaped connecting rods, open-loop and closed-loop motion characteristics were obtained through the mutual motion of the connecting rod and the sliding block to achieve active locking, which not only ensured high precision docking, but also achieved super docking stability.

Findings

The cone–hole docking mechanism had the docking tolerance performance of position deviation of 6mm and pitch deviation of 8° to achieve docking of six degrees of freedom (6-DOF), which had a load capacity of 230 N to achieve super docking stability. Under the connection of the cone–hole docking mechanism, the modular mobile robots reformed the multimachine joint mode to achieve obstacle-crossing, climbing and other multifunctional inspection in unstructured environment.

Originality/value

Based on mechanical analysis of universal models, a cone–hole docking mechanism combining active and passive functions, six-dimensional constraints could be implemented, was proposed in this paper. The characteristics of the posture-maintaining spring in the cone docking head and the compression spring at the two ends of two arc-shaped connecting rods were used to achieve docking with large tolerance. Passive locking and active locking modules were designed, mitigating impact load and the locking did not require power to maintain, which not only ensured high precision docking, but also achieved super docking stability.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 12 June 2023

Gan Zhan, Zhenyu Zhang, Zhihua Chen, Tianzhen Li, Dong Wang, Jigang Zhan and Zhengang Yan

This paper aims to focus on the spatial docking task of unmanned vehicles under ground conditions. The docking task of military unmanned vehicle application scenarios has strict…

Abstract

Purpose

This paper aims to focus on the spatial docking task of unmanned vehicles under ground conditions. The docking task of military unmanned vehicle application scenarios has strict requirements. Therefore, how to design a docking robot mechanism to achieve accurate docking between vehicles has become a challenge.

Design/methodology/approach

In this paper, first, the docking mechanism system is described, and the inverse kinematics model of the docking robot based on Stewart is established. Second, the genetic algorithm-based optimization method for multiobjective parameters of parallel mechanisms including workspace volume and mechanism flexibility is proposed to solve the problem of multiparameter optimization of parallel mechanism and realize the docking of unmanned vehicle space flexibility. The optimization results verify that the structural parameters meet the design requirements. Besides, the static and dynamic finite element analysis are carried out to verify the structural strength and dynamic performance of the docking robot according to the stiffness, strength, dead load and dynamic performance of the docking robot. Finally, taking the docking robot as the experimental platform, experiments are carried out under different working conditions, and the experimental results verify that the docking robot can achieve accurate docking tasks.

Findings

Experiments on the docking robot that the proposed design and optimization method has a good effect on structural strength and control accuracy. The experimental results verify that the docking robot mechanism can achieve accurate docking tasks, which is expected to provide technical guidance and reference for unmanned vehicles docking technology.

Originality/value

This research can provide technical guidance and reference for spatial docking task of unmanned vehicles under the ground conditions. It can also provide ideas for space docking missions, such as space simulator docking.

Details

Robotic Intelligence and Automation, vol. 43 no. 3
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 December 2003

Zhao Yang, Cao Xi‐Bin and Sun Zhao‐Wei

In this paper, dynamic behavior of docking mechanism during its acquisition period is analyzed. The results show that the docking mechanism can be modeled as a six‐freedom rigid…

Abstract

In this paper, dynamic behavior of docking mechanism during its acquisition period is analyzed. The results show that the docking mechanism can be modeled as a six‐freedom rigid body with a flexible support during this period, i.e. a typical structure. Because there exists nonlinear characteristics due to spacing, retardation, and friction in transmission elements and elements themselves, the theoretical analysis shows that docking mechanism can be simplified as a linear system and its dynamic characteristics determined through testing‐spectral function recognition method based on the linear vibration theory and corresponding software, after weakening effects of nonlinear factors. In order to determine whether docking mechanism has basic characteristics of a linear structure, some experiments have been carried out. The results show that testing‐spectral function recognition method can be used in dynamic systems.

Details

Aircraft Engineering and Aerospace Technology, vol. 75 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 23 January 2019

Huang Jianbin, Li Zhi, Huang Longfei, Meng Bo, Han Xu and Pang Yujia

According to the requirements of servicing and deorbiting the failure satellites, especially the tumbling ones on geosynchronous orbit, this paper aims to design a docking…

438

Abstract

Purpose

According to the requirements of servicing and deorbiting the failure satellites, especially the tumbling ones on geosynchronous orbit, this paper aims to design a docking mechanism to capture these tumbling satellites in orbit, to analyze the dynamics of the docking system and to develop a new collision force-limited control method in various docking speeds.

Design/methodology/approach

The mechanism includes a cone-rod mechanism which captures the apogee engine with a full consideration of despinning and damping characteristics and a locking and releasing mechanism which rigidly connects the international standard interface ring (Marman rings, such as 937B, 1194 and 1194A mechanical interface). The docking mechanism was designed under-actuated, aimed to greatly reduce the difficulty of control and ensure the continuity, synchronization and force uniformity under the process of repeatedly capturing, despinning, locking and releasing the tumbling satellite. The dynamic model of docking mechanism was established, and the impact force was analyzed in the docking process. Furthermore, a collision detection and compliance control method is proposed by using the active force-limited Cartesian impedance control and passive damping mechanism design.

Findings

A variety of conditions were set for the docking kinematics and dynamics simulation. The simulation and low-speed docking experiment results showed that the force translation in the docking phase was stable, the mechanism design scheme was reasonable and feasible and the proposed force-limited Cartesian impedance control could detect the collision and keep the external force within the desired value.

Originality/value

The paper presents a universal docking mechanism and force-limited Cartesian impedance control approach to capture the tumbling non-cooperative satellite. The docking mechanism was designed under-actuated to greatly reduce the difficulty of control and ensure the continuity, synchronization and force uniformity. The dynamic model of docking mechanism was established. The impact force was controlled within desired value by using a combination of active force-limited control approach and passive damping mechanism.

Article
Publication date: 25 April 2023

Yang Liu, Ziyu Chen, Jie Gao, Shuai Gan and Erlong Kang

Compared with the robotic manipulation in structured environment, high performance assembly of complex parts in extreme special environment is facing great challenges because of…

213

Abstract

Purpose

Compared with the robotic manipulation in structured environment, high performance assembly of complex parts in extreme special environment is facing great challenges because of the uncertainty in the environment, and the decline of the control accuracy of the robot and the sensor accuracy. The assembly and construction of the space station is a typical case. An important step in the construction of the space station is the module positioning and docking with the auxiliary of the space manipulator. The operation of the manipulator is faced with many problems, such as low sensing information accuracy, large end position deviation and the requirement of weak impact in the docking process. The purpose of this paper is to design a docking method at the strategy level to effectively solve the problems that may be faced in the docking process.

Design/methodology/approach

Inspired by the research of robotic high-precision compliant assembly, this paper introduces the concept of Attractive Region in Environment (ARIE) into the space manipulator–assisted module docking. The contact configuration space of the docking mechanism and the existence of ARIE are systematically analyzed. The docking strategy based on ARIE framework is proposed, in which the impedance control is used to ensure the weak impact during the docking process.

Findings

For the androgynous peripheral spacecraft docking mechanism, a large range of attractive region exists in the high-dimensional contact configuration space. The docking strategy based on ARIE framework can be designed according to the geometric characteristics of the constraint region and the structural characteristics of the docking mechanism. The virtual models and the simulation environment are established, and the effectiveness of the proposed method is preliminarily verified.

Originality/value

Based on the research results of robotic precision compliant manipulation, in this paper, the theory of ARIE is first systematically applied to the analysis of spacecraft docking problem and the design of docking scheme. The effectiveness of the proposed docking method is preliminarily verified for the requirements of large position tolerance and weak impact. The research results will provide theoretical support and technical reference for the assembly and construction of space station and other space manipulator operations.

Details

Robotic Intelligence and Automation, vol. 43 no. 2
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 21 March 2016

Weidong Zhu, Along Zhang, Biao Mei and Yinglin Ke

A large number of fastener holes have to be drilled with high quality in the circumferential splice region during the assembly of aircraft fuselage. The purpose of this paper is…

Abstract

Purpose

A large number of fastener holes have to be drilled with high quality in the circumferential splice region during the assembly of aircraft fuselage. The purpose of this paper is to design an automatic stepping mechanism for a circumferential splice drilling machine, to meet the requirements of large workspace and high accuracy in drilling at the same time.

Design/methodology/approach

A docking position detection method based on magnetic proximity sensors is proposed for the positioning of the arc-shaped rail with respect to the circumferential rails, which significantly improves the accuracy and reliability of automatic stepping. The slipping phenomenon of the end-effector is analyzed, and the optimized counter weights are used to eliminate the slipping and improve the working stability of the stepping mechanism.

Findings

An automatic stepping mechanism is developed for the circumferential splice drilling machine, which comprises the docking position detection method and the elimination/suppression method of the end-effector’s slipping.

Practical implications

The proposed automatic stepping mechanism has been integrated into the circumferential splice drilling machine for the fuselage assembly in an aircraft company in China.

Originality/value

An automatic stepping scheme for the circumferential splice drilling machine is proposed, which enhances the efficiency in circumferential splice drilling in aircraft fuselage assembly.

Details

Industrial Robot: An International Journal, vol. 43 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 4 July 2016

Pierpaolo Pergola and Vittorio Cipolla

The purpose of this paper is to deal with the study of an innovative unmanned mission to Mars, which is aimed at acquiring a great amount of detailed data related to both Mars’…

Abstract

Purpose

The purpose of this paper is to deal with the study of an innovative unmanned mission to Mars, which is aimed at acquiring a great amount of detailed data related to both Mars’ atmosphere and surface.

Design/methodology/approach

The Mars surface exploration is conceived by means of a fleet of drones flying among a set of reference points (acting also as entry capsules and charging stations) on the surface. The three key enabling technologies of the proposed mission are the use of small satellites (used in constellation with a minimum of three), the use of electric propulsion systems for the interplanetary transfer (to reduce the propellant mass fraction) and lightweight, efficient, drones designed to operate in the harsh Mars environment and with its tiny atmosphere.

Findings

The low-thrust Earth-Mars transfer is designed by means of an optimization approach resulting in a duration of slightly more than 27 months with a propellant amount of about 125 kg, which is compatible with the choice of considering a 500 kg-class spacecraft. Four candidate drone configurations have been selected as the result of a sensitivity analysis. Flight endurance, weight and drone size have been considered as the driving design parameters for the selection of the final configuration, which is characterized by six rotors, a total mass of about 6.5 kg and a flight endurance of 28 minutes. In the mission scenario proposed, the drone is assumed to be delivered on the Mars surface by means of a passive entry capsule, which acts also as a docking station and charging base. Such a capsule has been sized both in terms of mass (68 kg) and power (80 W), showing to be compatible with 500 kg-class spacecraft.

Research limitations/implications

As a general conclusion, the study shows the mission concept feasibility.

Practical implications

The concept would return incomparable scientific data and can be also be potentially implemented with a relatively low budget exploiting of the shelf components to the larger extent, small identical spacecraft buses and modular low-cost drones.

Originality/value

The innovative mission architecture proposed in this study aims at providing a complete coverage of the surface and lowest atmospheric layers. The main innovation factor of the proposed mission consists in the adoption of small multi-copter UAVs, also called “drones,” as remote-sensing platforms.

Details

International Journal of Intelligent Unmanned Systems, vol. 4 no. 3
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 21 May 2024

Gan Zhan, Zhihua Chen, Zhenyu Zhang, Jigang Zhan, Wentao Yu and Jiehao Li

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking…

Abstract

Purpose

This study aims to address the issue of random movement and non coordination between docking mechanisms and locking mechanisms, and proposes a comprehensive dynamic docking control architecture that integrates perception, planning, and motion control.

Design/methodology/approach

Firstly, the proposed dynamic docking control architecture uses laser sensors and a charge-coupled device camera to perceive the pose of the target. The sensor data are mapped to a high-dimensional potential field space and fused to reduce interference caused by detection noise. Next, a new potential function based on multi-dimensional space is developed for docking path planning, which enables the docking mechanism based on Stewart platform to rapidly converge to the target axis of the locking mechanism, which improves the adaptability and terminal docking accuracy of the docking state. Finally, to achieve precise tracking and flexible docking in the final stage, the system combines a self-impedance controller and an impedance control algorithm based on the planned trajectory.

Findings

Extensive simulations and experiments have been conducted to validate the effectiveness of the dynamic docking system and its control architecture. The results indicate that even if the target moves randomly, the system can successfully achieve accurate, stable and flexible dynamic docking.

Originality/value

This research can provide technical guidance and reference for docking task of unmanned vehicles under the ground conditions. It can also provide ideas for space docking missions, such as space simulator docking.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 23 March 2022

Wenmin Chu and Xiang Huang

Large gear components widely exist in the transmission system of helicopters, ships, etc. Due to the small assembly clearance of large gear components, using an automatic docking…

Abstract

Purpose

Large gear components widely exist in the transmission system of helicopters, ships, etc. Due to the small assembly clearance of large gear components, using an automatic docking system based on position control will lead to forced assembly. The purpose of this paper is to reduce the assembly stress of large gear components by an active compliant docking technology based on distributed force sensors.

Design/methodology/approach

Firstly, aiming at the noise interference in three-dimensional force sensor (TDFS), Kalman filter and Savitzky–Golay filter are used to process the sensor’s output signal. Secondly, the active compliant docking control model is constructed according to the principle of impedance control. Thirdly, the contact force is calculated based on the Euler equation, and the impedance control parameters are tuned by the particle swarm optimization algorithm. Finally, an active compliant docking system of a large gear structure based on distributed force sensor is built in the laboratory to verify the proposed method.

Findings

The experimental results show that the contact force and contact torque gradually decrease in all directions and are always in the safe range during the docking process. The feasibility of this method in practical application is preliminarily demonstrated.

Originality/value

The distributed TDFSs are used to replace the traditional six-dimensional force sensor in the active compliant docking system of gear components, which solves the problem of the small bearing capacity of the conventional active compliant docking system. This method can also be used for the docking of other large components.

Details

Sensor Review, vol. 42 no. 3
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 August 2005

Zhao Yang, Tian Hao and Cao Xi‐bin

To provide the basis and rule of theory analysis for the design of transmission parameters of the buffer system of the space docking mechanism.

Abstract

Purpose

To provide the basis and rule of theory analysis for the design of transmission parameters of the buffer system of the space docking mechanism.

Design/methodology/approach

Setting up the dynamic model of the buffer system of the space docking mechanism by adopting virtual work theory, and analyzing the effects of the transmission parameters of the buffer system to the system dynamic characteristics on the basis of the decouple principle.

Findings

The buffer characteristics of the docking mechanism varying with the change of the transmission parameters of the buffer system, and the change of the buffer force characteristics of the translation degree of freedom are more prominent than that of the turning angle degree of freedom; the mechanics characteristics of the buffer system will approximately satisfy the decouple requirement by selecting the appropriate transmission parameters.

Research limitations/implications

Only consider the transmission parameters for the transmission elements in the buffer system dynamic model, without considering the mass and inertia parameters.

Practical implications

Provides valuable method of parameter design to design the transmission system of the space docking mechanism.

Originality/value

Putting forward up the method of approximation to solve the sub‐ diagonalize matrix of the stiff matrix and the damp matrix, and then determining some main transmission ratio of the system. This method is simple, practical for the system design.

Details

Aircraft Engineering and Aerospace Technology, vol. 77 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of over 1000