Search results

1 – 10 of 253
Open Access
Article
Publication date: 22 March 2024

Geming Zhang, Lin Yang and Wenxiang Jiang

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is…

Abstract

Purpose

The purpose of this study is to introduce the top-level design ideas and the overall architecture of earthquake early-warning system for high speed railways in China, which is based on P-wave earthquake early-warning and multiple ways of rapid treatment.

Design/methodology/approach

The paper describes the key technologies that are involved in the development of the system, such as P-wave identification and earthquake early-warning, multi-source seismic information fusion and earthquake emergency treatment technologies. The paper also presents the test results of the system, which show that it has complete functions and its major performance indicators meet the design requirements.

Findings

The study demonstrates that the high speed railways earthquake early-warning system serves as an important technical tool for high speed railways to cope with the threat of earthquake to the operation safety. The key technical indicators of the system have excellent performance: The first report time of the P-wave is less than three seconds. From the first arrival of P-wave to the beginning of train braking, the total delay of onboard emergency treatment is 3.63 seconds under 95% probability. The average total delay for power failures triggered by substations is 3.3 seconds.

Originality/value

The paper provides a valuable reference for the research and development of earthquake early-warning system for high speed railways in other countries and regions. It also contributes to the earthquake prevention and disaster reduction efforts.

Open Access
Article
Publication date: 8 August 2023

Elisa Verna, Gianfranco Genta and Maurizio Galetto

The purpose of this paper is to investigate and quantify the impact of product complexity, including architectural complexity, on operator learning, productivity and quality…

Abstract

Purpose

The purpose of this paper is to investigate and quantify the impact of product complexity, including architectural complexity, on operator learning, productivity and quality performance in both assembly and disassembly operations. This topic has not been extensively investigated in previous research.

Design/methodology/approach

An extensive experimental campaign involving 84 operators was conducted to repeatedly assemble and disassemble six different products of varying complexity to construct productivity and quality learning curves. Data from the experiment were analysed using statistical methods.

Findings

The human learning factor of productivity increases superlinearly with the increasing architectural complexity of products, i.e. from centralised to distributed architectures, both in assembly and disassembly, regardless of the level of overall product complexity. On the other hand, the human learning factor of quality performance decreases superlinearly as the architectural complexity of products increases. The intrinsic characteristics of product architecture are the reasons for this difference in learning factor.

Practical implications

The results of the study suggest that considering product complexity, particularly architectural complexity, in the design and planning of manufacturing processes can optimise operator learning, productivity and quality performance, and inform decisions about improving manufacturing operations.

Originality/value

While previous research has focussed on the effects of complexity on process time and defect generation, this study is amongst the first to investigate and quantify the effects of product complexity, including architectural complexity, on operator learning using an extensive experimental campaign.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 9
Type: Research Article
ISSN: 1741-038X

Keywords

Open Access
Article
Publication date: 19 January 2024

Fuzhao Chen, Zhilei Chen, Qian Chen, Tianyang Gao, Mingyan Dai, Xiang Zhang and Lin Sun

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production…

Abstract

Purpose

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder. The tolerance leads to imprecise brake control, so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system. This paper aims to present improved variational mode decomposition (VMD) algorithm, which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.

Design/methodology/approach

The VMD algorithm plays a pivotal role in the preliminary phase, employing mode decomposition techniques to decompose the motor speed signals. Afterward, the error energy algorithm precision is utilized to extract abnormal features, leveraging the practical intrinsic mode functions, eliminating extraneous noise and enhancing the signal’s fidelity. This refined signal then becomes the basis for fault analysis. In the analytical step, the cepstrum is employed to calculate the formant and envelope of the reconstructed signal. By scrutinizing the formant and envelope, the fault point within the electromechanical brake system is precisely identified, contributing to a sophisticated and accurate fault diagnosis.

Findings

This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake (EMB) motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction. The signal is reconstructed according to the effective intrinsic mode functions (IMFS) component of removing noise, and the formant and envelope are calculated by cepstrum to locate the fault point. Experiments show that the empirical mode decomposition (EMD) algorithm can effectively decompose the original speed signal. After feature extraction, signal enhancement and fault identification, the motor mechanical fault point can be accurately located. This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.

Originality/value

By using this improved VMD algorithm, the electromechanical brake system can precisely identify the rotational anomaly of the motor. This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled. Compared with the conventional motor diagnosis method, this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs. Moreover, the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems.

Open Access
Article
Publication date: 1 December 2023

Francois Du Rand, André Francois van der Merwe and Malan van Tonder

This paper aims to discuss the development of a defect classification system that can be used to detect and classify powder bed surface defects from captured layer images without…

Abstract

Purpose

This paper aims to discuss the development of a defect classification system that can be used to detect and classify powder bed surface defects from captured layer images without the need for specialised computational hardware. The idea is to develop this system by making use of more traditional machine learning (ML) models instead of using computationally intensive deep learning (DL) models.

Design/methodology/approach

The approach that is used by this study is to use traditional image processing and classification techniques that can be applied to captured layer images to detect and classify defects without the need for DL algorithms.

Findings

The study proved that a defect classification algorithm could be developed by making use of traditional ML models with a high degree of accuracy and the images could be processed at higher speeds than typically reported in literature when making use of DL models.

Originality/value

This paper addresses a need that has been identified for a high-speed defect classification algorithm that can detect and classify defects without the need for specialised hardware that is typically used when making use of DL technologies. This is because when developing closed-loop feedback systems for these additive manufacturing machines, it is important to detect and classify defects without inducing additional delays to the control system.

Details

Rapid Prototyping Journal, vol. 29 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 3 May 2024

Salim Caliskan and Hakan Akyuz

This study aims to investigate the effect of speckle pattern on displacement measurements using different speckle diameters and coverage ratios.

Abstract

Purpose

This study aims to investigate the effect of speckle pattern on displacement measurements using different speckle diameters and coverage ratios.

Design/methodology/approach

In order to compare the coverage ratio and speckle diameter during the evaluation of the correlation of digital images (DIC) study, template speckle plates were produced on a computer numerical control (CNC) punch press with 600 punches per minute. After the speckle plates were manufactured, the speckled pattern was randomly painted on a plain white side through the manufactured template plates, and then tensile tests were performed under the same loading conditions for each sample to observe displacement variation via correlation parameters.

Findings

During the manufacturing of templates with thin plates, a punch diameter of less than 1.7 mm will cause tool failure; therefore, uniform speckle size can be assessed before operation. A higher coverage ratio resulted in more accurate and reliable results in displacement data. With smaller coverage, the facet size should be increased to achieve favorable results.

Research limitations/implications

If thick template plates are selected, speckle painting cannot be done properly; therefore, template thickness shall also be assessed before operation.

Practical implications

For randomly distributed DIC templates, increasing coverage beyond 50% does not make sense due to difficulties in the production process in the punch press.

Originality/value

Evaluating DIC results via templates manufactured in a punch press with different speckle diameters and coverage ratios is a new topic in literature.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 16 August 2023

Andrea Zani, Alberto Speroni, Andrea Giovanni Mainini, Michele Zinzi, Luisa Caldas and Tiziana Poli

The paper aims to investigate the comfort-related performances of an innovative solar shading solution based on a new composite patented material that consists of a cement-based…

Abstract

Purpose

The paper aims to investigate the comfort-related performances of an innovative solar shading solution based on a new composite patented material that consists of a cement-based matrix coupled with a stretchable three-dimensional textile. The paper’s aim is, through a performance-based generative design approach, to develop a high-performance static shading system able to guarantee adequate daylit spaces, a connection with the outdoors and a glare-free environment in the view of a holistic and occupant-centric daylight assessment.

Design/methodology/approach

The paper describes the design and simulation process of a complex static shading system for digital manufacturing purposes. Initially, the optical material properties were characterized to calibrate radiance-based simulations. The developed models were then implemented in a multi-objective genetic optimization algorithm to improve the shading geometries, and their performance was assessed and compared with traditional external louvres and overhangs.

Findings

The system developed demonstrates, for a reference office space located in Milan (Italy), the potential of increasing useful daylight illuminance by 35% with a reduced glare of up to 70%–80% while providing better uniformity and connection with the outdoors as a result of a topological optimization of the shape and position of the openings.

Originality/value

The paper presents the innovative nature of a new composite material that, coupled with the proposed performance-based optimization process, enables the fabrication of optimized shading/cladding surfaces with complex geometries whose formability does not require ad hoc formworks, making the process fast and economic.

Details

Construction Innovation , vol. 24 no. 1
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 20 March 2024

Guijian Xiao, Tangming Zhang, Yi He, Zihan Zheng and Jingzhe Wang

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding…

Abstract

Purpose

The purpose of this review is to comprehensively consider the material properties and processing of additive titanium alloy and provide a new perspective for the robotic grinding and polishing of additive titanium alloy blades to ensure the surface integrity and machining accuracy of the blades.

Design/methodology/approach

At present, robot grinding and polishing are mainstream processing methods in blade automatic processing. This review systematically summarizes the processing characteristics and processing methods of additive manufacturing (AM) titanium alloy blades. On the one hand, the unique manufacturing process and thermal effect of AM have created the unique processing characteristics of additive titanium alloy blades. On the other hand, the robot grinding and polishing process needs to incorporate the material removal model into the traditional processing flow according to the processing characteristics of the additive titanium alloy.

Findings

Robot belt grinding can solve the processing problem of additive titanium alloy blades. The complex surface of the blade generates a robot grinding trajectory through trajectory planning. The trajectory planning of the robot profoundly affects the machining accuracy and surface quality of the blade. Subsequent research is needed to solve the problems of high machining accuracy of blade profiles, complex surface material removal models and uneven distribution of blade machining allowance. In the process parameters of the robot, the grinding parameters, trajectory planning and error compensation affect the surface quality of the blade through the material removal method, grinding force and grinding temperature. The machining accuracy of the blade surface is affected by robot vibration and stiffness.

Originality/value

This review systematically summarizes the processing characteristics and processing methods of aviation titanium alloy blades manufactured by AM. Combined with the material properties of additive titanium alloy, it provides a new idea for robot grinding and polishing of aviation titanium alloy blades manufactured by AM.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 14 March 2024

Zabih Ghelichi, Monica Gentili and Pitu Mirchandani

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to…

191

Abstract

Purpose

This paper aims to propose a simulation-based performance evaluation model for the drone-based delivery of aid items to disaster-affected areas. The objective of the model is to perform analytical studies, evaluate the performance of drone delivery systems for humanitarian logistics and can support the decision-making on the operational design of the system – on where to locate drone take-off points and on assignment and scheduling of delivery tasks to drones.

Design/methodology/approach

This simulation model captures the dynamics and variabilities of the drone-based delivery system, including demand rates, location of demand points, time-dependent parameters and possible failures of drones’ operations. An optimization model integrated with the simulation system can update the optimality of drones’ schedules and delivery assignments.

Findings

An extensive set of experiments was performed to evaluate alternative strategies to demonstrate the effectiveness for the proposed optimization/simulation system. In the first set of experiments, the authors use the simulation-based evaluation tool for a case study for Central Florida. The goal of this set of experiments is to show how the proposed system can be used for decision-making and decision-support. The second set of experiments presents a series of numerical studies for a set of randomly generated instances.

Originality/value

The goal is to develop a simulation system that can allow one to evaluate performance of drone-based delivery systems, accounting for the uncertainties through simulations of real-life drone delivery flights. The proposed simulation model captures the variations in different system parameters, including interval of updating the system after receiving new information, demand parameters: the demand rate and their spatial distribution (i.e. their locations), service time parameters: travel times, setup and loading times, payload drop-off times and repair times and drone energy level: battery’s energy is impacted and requires battery change/recharging while flying.

Details

Journal of Humanitarian Logistics and Supply Chain Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2042-6747

Keywords

Open Access
Article
Publication date: 9 October 2023

Mingyao Sun and Tianhua Zhang

A real-time production scheduling method for semiconductor back-end manufacturing process becomes increasingly important in industry 4.0. Semiconductor back-end manufacturing…

Abstract

Purpose

A real-time production scheduling method for semiconductor back-end manufacturing process becomes increasingly important in industry 4.0. Semiconductor back-end manufacturing process is always accompanied by order splitting and merging; besides, in each stage of the process, there are always multiple machine groups that have different production capabilities and capacities. This paper studies a multi-agent based scheduling architecture for the radio frequency identification (RFID)-enabled semiconductor back-end shopfloor, which integrates not only manufacturing resources but also human factors.

Design/methodology/approach

The architecture includes a task management (TM) agent, a staff instruction (SI) agent, a task scheduling (TS) agent, an information management center (IMC), machine group (MG) agent and a production monitoring (PM) agent. Then, based on the architecture, the authors developed a scheduling method consisting of capability & capacity planning and machine configuration modules in the TS agent.

Findings

The authors used greedy policy to assign each order to the appropriate machine groups based on the real-time utilization ration of each MG in the capability & capacity (C&C) planning module, and used a partial swarm optimization (PSO) algorithm to schedule each splitting job to the identified machine based on the C&C planning results. At last, we conducted a case study to demonstrate the proposed multi-agent based real-time production scheduling models and methods.

Originality/value

This paper proposes a multi-agent based real-time scheduling framework for semiconductor back-end industry. A C&C planning and a machine configuration algorithm are developed, respectively. The paper provides a feasible solution for semiconductor back-end manufacturing process to realize real-time scheduling.

Details

IIMBG Journal of Sustainable Business and Innovation, vol. 1 no. 1
Type: Research Article
ISSN: 2976-8500

Keywords

Open Access
Article
Publication date: 17 April 2023

Charles O. Manasseh, Ifeoma C. Nwakoby, Ogochukwu C. Okanya, Nnenna G. Nwonye, Onuselogu Odidi, Kesuh Jude Thaddeus, Kenechukwu K. Ede and Williams Nzidee

This paper aims to assess the impact of digital financial innovation on financial system development in Common Market for eastern and Southern Africa (COMESA). This paper…

3082

Abstract

Purpose

This paper aims to assess the impact of digital financial innovation on financial system development in Common Market for eastern and Southern Africa (COMESA). This paper evaluates the dynamic relationship between digital financial innovation measures and financial system development using time series data from COMESA countries for the period 1997–2019.

Design/methodology/approach

A dynamic autoregressive distributed lag model (ARDL) was adopted and the mean group (MG), pooled mean group (PMG) and dynamic fixed effect (DFE) of the model were estimated to evaluate the short- and long-run impact. In addition, the dynamic generalized method of moments (DGMM) was adopted for a robustness check. The Hausman test results show PMG to be the most consistent and efficient estimator, while the coefficient of lagged dependent variable of different GMM is less than the fixed effect coefficient, and, as such, suggests system GMM is the most suitable estimator. Data for the study were sourced from World Bank Development Indicator (WDI, 2020), World Governance Indicator (WGI, 2020) and World Bank Global Financial Development Database (GFD, 2020).

Findings

The result shows that digital financial innovation significantly impacts financial system development in the long run. As such, the evidence revealed that automated teller machines (ATMs), point of sale (POS), mobile payments (MP) and mobile banking are significant and contribute positively to financial system development in the long run, while mobile money (MM) and Internet banking (INB) are insignificant but exhibit positive and inverse relationship with financial development respectively. Further investigation revealed that institutional quality and a stable macroeconomic environment including their interactive term are significantly imperative in predicting financial system development in the COMESA region.

Practical implications

Researchers recommend a cohesive and conscious policy that would checkmate the divergence in the short run and suggest a common regional innovative financial strategy that could be pursued to incentivize technology transfer needed to promote financial system development in the long run. More so, plausible product and process innovations may be adapted to complement innovative institutions in the different components of the COMESA financial system.

Social implications

Digital financial innovation services if well managed increase the inherent benefits in financial system development.

Originality/value

To the best of the authors’ knowledge, this paper presents new background information on digital financial innovation that may stimulate the development of the financial system, particularly in the COMESA region. It also exposes the relevance of digital financial innovation, institutional quality and stable macroeconomic environment as well as their interactive effect on COMESA financial system development.

Details

Asian Journal of Economics and Banking, vol. 8 no. 1
Type: Research Article
ISSN: 2615-9821

Keywords

Access

Only Open Access

Year

Last 6 months (253)

Content type

1 – 10 of 253