Search results

1 – 10 of 158
Article
Publication date: 5 December 2023

Abdelazeem Hassan Shehata Atyia and Abdelrahman Mohamed Ghanim

The accurate modeling of magnetic hysteresis in electrical steels is important in several electrical and electronic applications. Numerical models have long been known that can…

Abstract

Purpose

The accurate modeling of magnetic hysteresis in electrical steels is important in several electrical and electronic applications. Numerical models have long been known that can correctly reproduce some typical behaviours of these magnetic materials. Among these, the model proposed by Jiles and Atherton must certainly be mentioned. This model is intuitive and fairly easy to implement and identify with relatively few experimental data. Also, for this reason, it has been extensively studied in different formulations. The developments and numerical tests made on this hysteresis model have indicated that it is able to accurately reproduce symmetrical cycles, especially the major loop, but often it fails to reproduce non-symmetrical cycles. This paper aims to show the positive aspects and highlight the defects of the different formulations in predicting the minor loops of electrical steels excited by non-sinusoidal currents.

Design/methodology/approach

The different formulations are applied to different electrical steels, and the data coming from the simulations are compared with those measured experimentally. The direct and inverse Jiles–Atherton models, including the introduction of the dissipative factor approach, are presented, and their limitations are proposed and validated using the measurements of three non-grain-oriented materials. Only the measured major loop is used to identify the parameters of the Jiles–Atherton model. Furthermore, the direct and inverse Jiles–Atherton models were used to simulate the minor loops as well as the hysteresis cycles with direct component (DC) bias excitation. Finally, the simulation results are discussed and compared to measurements for each study case.

Findings

The paper indicates that both the direct and the inverse Jiles–Atherton model formulations provide a good agreement with the experimental data for the major loop representation; nevertheless, both models can not accurately predict the minor loops even when the modification approaches proposed in the literature were implemented.

Originality/value

The Jiles–Atherton model and its modifications are widely discussed in the literature; however, some limitations of the model and its modification in the case of the distorted current waveform are not completely highlighted. Furthermore, this paper contains an original discussion on the accuracy of the prediction of minor loops from distorted current waveforms, including DC bias.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 September 2010

Satoshi Suzuki, Tadashi Yamaguchi, Yoshihiro Kawase, Koichi Sato, Shuhei Kakami, Katsuhiro Hirata, Tomohiro Ota and Yuya Hasegawa

The purpose of this paper is to develop a dynamic analysis method of a novel spherical resonant actuator. In this method, the magnetic field equation is coupled with the electric…

Abstract

Purpose

The purpose of this paper is to develop a dynamic analysis method of a novel spherical resonant actuator. In this method, the magnetic field equation is coupled with the electric circuit equation and the motion equation with the mesh modification method using the Laplace equation applied to the rotation of the spherical actuator.

Design/methodology/approach

The static torque characteristics and dynamic characteristics of the spherical resonant actuator using the proposed method are clarified. The calculated results are compared with the measured ones.

Findings

The calculated static torque agrees well with the measured one. The validity of the computation using the proposed method is quantitatively clarified through the comparison with the measurement.

Originality/value

The paper proposes the dynamic analysis method of the complicated spherical resonant actuator using the mesh modification method by the Laplace equation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 29 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 January 2009

Masato Enokizono, Takashi Todaka and Shinya Urata

The purpose of this paper is to show formulation of a dynamic E&S model, which enables analysis of the effects of eddy currents under vector magnetic behavior in numerical…

Abstract

Purpose

The purpose of this paper is to show formulation of a dynamic E&S model, which enables analysis of the effects of eddy currents under vector magnetic behavior in numerical simulations and to demonstrate its usefulness.

Design/methodology/approach

When a magnetic flux waveform is distorted, effects of eddy currents increase due to harmonic flux components. In such a case, the result calculated by using the conventional E&S model does not agree with the measured one. The conventional E&S model is improved by considering magnetic flux waveform distortion. The harmonic components of the magnetic field strength waveform were estimated with the classical eddy current model.

Findings

In the verification of the dynamic E&S model, it was found that the magnetic field was suppressed by the effect of the eddy current. The conventional analysis overestimates the magnetic field, because the magnetic flux waveform cannot distort. In the magnetic characteristic analysis of a three‐phase transformer model core, the correlation between the eddy currents and the flux waveform distortion are clearly demonstrated.

Practical implications

Both magnetic flux and field strength waveform distortions can be represented in numerical simulations. The dynamic E&S model is very useful for magnetic core design, taking account of practical 2D vector magnetic properties.

Originality/value

The method presented in this paper enables effects of eddy currents in the magnetic characteristic analysis to be more accurately expressed, considering the 2D vector magnetic properties.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 28 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 November 2015

Aziz Boukadoum, Tahar Bahi, Youcef Soufi, Abla Bouguerne and Sofiane Oudina

The use of power electronic equipment such as conventional AC-DC-AC converters cause several problems in electrical networks and its components. They generate harmonic currents

Abstract

Purpose

The use of power electronic equipment such as conventional AC-DC-AC converters cause several problems in electrical networks and its components. They generate harmonic currents and disturb the electrical power sources; so, it is necessary to research alternative topologies of power electronic converters based on advanced intelligent controllers, which reduce or even eliminate harmonics to achieve energy-saving and environmental protection. The use of matrix converter (MC) is, considered as an attractive solution to maintain pure sinusoidal input and output current waveforms. The paper aims to discuss this issue.

Design/methodology/approach

The studied system is composed of a three phase matrix converter (TMC) feeding a linear R, L load and a trees phase rectifier considered as a non-linear load; the proposed control strategy is based on a fuzzy logic controller (FLC) associated to the (space vector modulation) SVM modulation technique, this choice is motivated by the advantages that represent the combination of FLC and SVM in term of power quality enhancement in both input and output sides of MC.

Findings

The model is validated based on simulation results that illustrate the effectiveness of the proposed system in term of power quality amelioration. The high performance of the proposed FLC is illustrated in all study cases especially in the case of perturbed input voltage, it is not only able to keep the whole system stable, but also it reduces harmonic distortion THD to respect international standards recommendation.

Originality/value

In this paper, an associated linear (RL), non-linear loads and TMC is studied. From the mathematical point of view, the MC is modeled and analyzed. From the technique point of view, the MC allows sinusoidal current absorbance from the network with good qualities in term of harmonic distortion compensation, and high reliability under various loads and disturbed input voltage.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 21 December 2023

Hongsen You, Mengying Gan, Dapeng Duan, Cheng Zhao, Yuan Chi, Shuai Gao and Jiansheng Yuan

This paper aims to develop a model that reflects the current transformer (CT) core materials nonlinearity. The model enables simulation and analysis of the CT excitation current

Abstract

Purpose

This paper aims to develop a model that reflects the current transformer (CT) core materials nonlinearity. The model enables simulation and analysis of the CT excitation current that includes the inductive magnetizing current and the resistive excitation current.

Design/methodology/approach

A nonlinear CT model is established with the magnetizing current as the solution variable. This model presents the form of a nonlinear differential equation and can be solved discretely using the Runge–Kutta method.

Findings

By simulating variations in the excitation current for different primary currents, loads and core materials, the results demonstrate that enhancing the permeability of the BH curve leads to a more significant improvement in the CT ratio error at low primary currents.

Originality/value

The proposed model has three obvious advantages over the previous models with the secondary current as the solution variable: (1) The differential equation is simpler and easier to solve. Previous models contain the time differential terms of the secondary current and excitation flux or the integral term of the flux, making the iterative solution complicated. The proposed model only contains the time differential of the magnetizing current. (2) The accuracy of the excitation current obtained by the proposed model is higher. Previous models calculate the excitation current by subtracting the secondary current from the converted primary current. Because these two currents are much greater than the excitation current, the error of calculating the small excitation current by subtracting two large numbers is greatly enlarged. (3) The proposed model can calculate the distorted waveform of the excitation current and error for any form of time-domain primary current, while previous models can only obtain the effective value.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 14 August 2007

Andrzej Szromba

Shunt active power filters are used to decrease or almost eliminate non‐active currents flowing through the supply source. Numerous control methods of active filters have been…

Abstract

Purpose

Shunt active power filters are used to decrease or almost eliminate non‐active currents flowing through the supply source. Numerous control methods of active filters have been proposed in many papers. The aim of this paper is to demonstrate a simple but very effective method of obtaining the compensated load active current.

Design/methodology/approach

The method allows one to control the shunt active power filter only by monitoring energy stored in the filter. Based on the introduced generic structure of the filter the changes of filter energy are examined in order to obtain the reference current for the filter compensation action.

Findings

This presented method can be implemented to nearly all structures of active filters. It is suitable not only for the single‐phase but also for the three‐phase circuit. Such energy‐controlled filters may be built on the basis of voltage‐ and current‐source inverters as well.

Originality/value

This paper provides an alternative approach to address the problem of the shunt active filter control method. The paper shows that monitoring the filter's energy suffices for proper control of the filter compensation action.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 26 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 February 2024

Yumin He, Tingyun Gu, Bowen Li, Yu Wang, Dongyuan Qiu, Yang Zhang and Peicheng Qiu

Electric spring (ES) is a demand response method that can stabilize the voltage of critical loads and improve power quality, especially in a weak power grid with a high proportion…

Abstract

Purpose

Electric spring (ES) is a demand response method that can stabilize the voltage of critical loads and improve power quality, especially in a weak power grid with a high proportion of renewable energy sources. Most of existing ESs are implemented by voltage-source inverter (VSI), which has some shortcomings. For example, the DC-link capacitor limits the service life of ES, and the battery is costly and hard to recycle. Besides, conventional VSI cannot boost the voltage, which limits the application of ES in high-voltage occasions. This study aims to propose a novel scheme of ES to solve the above problems.

Design/methodology/approach

In this work, an ES topology based on current-source inverter (CSI) without a battery is presented, and a direct current control strategy is proposed. The operating principles, voltage regulation range and parameter design of the proposed ES are discussed in detail.

Findings

The proposed ES is applicable to various voltage levels, and the harmonics are effectively suppressed, which have been validated via the experimental results in both ideal and distorted grid conditions.

Originality/value

An ES topology based on battery-less CSI is proposed for the first time, which reduces the cost and prolongs the service time of ES. A novel control strategy is proposed to realize the functions of voltage regulation and harmonic suppression.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 2 May 2017

Martin Petrun, Simon Steentjes, Kay Hameyer and Drago Dolinar

This paper aims to compare different static history-independent hysteresis models (mathematical-, behavioural- and physical-based ones) and a history-dependent hysteresis model in…

Abstract

Purpose

This paper aims to compare different static history-independent hysteresis models (mathematical-, behavioural- and physical-based ones) and a history-dependent hysteresis model in terms of parameter identification effort and accuracy.

Design/methodology/approach

The discussed models were tested for distorted-excitation waveforms to explore their predictions of complex magnetization curves. Static hysteresis models were evaluated by comparing the calculated and measured major and minor static hysteresis loops.

Findings

The analysis shows that the resulting accuracy of the different hysteresis models is strongly dependent on the excitation waveform, i.e. smooth excitations, distorted flux waveforms, transients or steady-state regimes. Obtained results show significant differences between predictions of discussed static hysteresis models.

Research limitations/implications

The general aim was to identify the models on a very basic and limited set of measured data, i.e. if possible using only the measured major static loop of the material. The quasi-static major hysteresis loop was measured at Bmax = 1.5 T.

Practical/implications

The presented analysis allows selection of the most-suited hysteresis model for the sought-for application and appraisal of the individual limitations.

Originality/value

The presented analysis shows differences in intrinsic mechanisms to predict magnetization curves of the majority of the well-known static hysteresis models. The results are essential when selecting the most-suited hysteresis model for a specific application.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Open Access
Article
Publication date: 28 February 2023

Dennis Albert, Lukas Daniel Domenig, Philipp Schachinger, Klaus Roppert and Herwig Renner

The purpose of this paper is to investigate the applicability of a direct current (DC) hysteresis measurement on power transformer terminals for the subsequent hysteresis model…

Abstract

Purpose

The purpose of this paper is to investigate the applicability of a direct current (DC) hysteresis measurement on power transformer terminals for the subsequent hysteresis model parametrization in transformer grey box topology models.

Design/methodology/approach

Two transformer topology models with two different hysteresis models are used together with a DC hysteresis measurement via the power transformer terminals to parameterize the hysteresis models by means of an optimization. The calculated current waveform with the derived model in the transformer no-load condition is compared to the measured no-load current waveforms to validate the model.

Findings

The proposed DC hysteresis measurement via the power transformer terminals is suitable to parametrize two hysteresis models implemented in transformer topology models to calculate the no-load current waveforms.

Originality/value

Different approaches for the measurement and utilization of transformer terminal measurements for the hysteresis model parametrization are discussed in literature. The transformer topology models, derived with the presented approach, are able to reproduce the transformer no-load current waveform with acceptable accuracy.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 158